Abstract

The dispersion of nanoparticles in conventional heat transfer fluids has been proven to improve the performance of the fluids. However, the study on the heat transfer performance of hybrid nanofluids in the mixture of water and green bioglycol (BG) is limited in the literature. This paper presents the heat transfer performance and friction factor of green BG-based TiO2–SiO2 nanofluids. The TiO2 and SiO2 nanoparticles were dispersed in the mixture of 60:40 water: bioglycol (W/BG) and prepared at various concentrations up to 2.5% and composition ratios of 20:80. The experimental study on forced convection heat transfer was done under turbulent flow at constant heat flux for operating temperature of 70 °C. The heat transfer enhancement increased significantly with volume concentrations. The maximum heat transfer enhancements of the TiO2–SiO2 nanofluids at bulk temperature of 70 °C were observed to be up to 67.81% for 2.5% volume concentration. A slight friction factor escalation of the nanofluids was observed with 12% maximum increment. New correlations were developed to estimate the Nusselt number, and friction factor with average deviations of less than 4.3%. As a conclusion, the employment of the ecofriendly coolant nanofluids in improving thermal performance is proven and applicable for turbulent forced convection heat transfer applications.

References

1.
Ali
,
H. M.
,
2020
, “
Recent Advancements in PV Cooling and Efficiency Enhancement Integrating Phase Change Materials Based Systems—A Comprehensive Review
,”
Sol. Energy
,
197
, pp.
163
198
.10.1016/j.solener.2019.11.075
2.
Ganji
,
D. D.
,
Sabzehmeidani
,
Y.
, and
Sedighiamiri
,
A.
,
2018
, “
Chapter 4—Heat Transfer in Nanofluids
,”
Nonlinear Systems in Heat Transfer
,
D. D.
Ganji
,
Y.
Sabzehmeidani
, and
A.
Sedighiamiri
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
153
223
.
3.
Reay
,
D. A.
,
1991
, “
Heat Transfer Enhancement—A Review of Techniques and Their Possible Impact on Energy Efficiency in the U.K.
,”
Heat Recovery Syst. CHP
,
11
(
1
), pp.
1
40
.10.1016/0890-4332(91)90185-7
4.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
5.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Mamat
,
R.
, and
Anuar
,
S.
,
2014
, “
Turbulent Forced Convection Heat Transfer of Nanofluids With Twisted Tape Insert in a Plain Tube
,”
Energy Procedia
,
52
, pp.
296
307
.10.1016/j.egypro.2014.07.081
6.
Man
,
C.
,
Lv
,
X.
,
Hu
,
J.
,
Sun
,
P.
, and
Tang
,
Y.
,
2017
, “
Experimental Study on Effect of Heat Transfer Enhancement for Single-Phase Forced Convective Flow With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
106
, pp.
877
883
.10.1016/j.ijheatmasstransfer.2016.10.026
7.
Abdul Hamid
,
K.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2019
, “
Heat Transfer Performance of TiO2–SiO2 Nanofluids in a Tube With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
152
, pp.
275
286
.10.1016/j.applthermaleng.2019.02.083
8.
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2018
, “
Chapter 10: A Review of Heat Transfer Enhancement Methods Using Coiled Wire and Twisted Tape Inserts, Heat Transfer—Models, Methods and Applications
,”
Heat Transfer: Models, Methods and Applications
,
K.
Volkov
, ed.,
IntechOpen
,
London
, pp.
199
217
.
9.
Ibrahim
,
H.
,
Sazali
,
N.
,
Shah
,
A. S. M.
,
Shaiful
,
M.
,
Karim
,
A.
,
Aziz
,
F.
, and
Salleh
,
W. N. W.
,
2019
, “
A Review on Factors Affecting Heat Transfer Efficiency of Nanofluids for Application in Plate Heat Exchanger
,”
Structure
,
60
(
1
), pp.
144
154
.https://www.akademiabaru.com/submit/index.php/arfmts/article/view/2636
10.
Ma
,
B.
, and
Banerjee
,
D.
,
2019
, “
Numerical Modeling of Nanofluid Thermal Conductivity: The Effect of Nanonetwork on Thermal Transport Behavior
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
12
), p.
122401
.10.1115/1.4044701
11.
Li
,
Y.
,
Zhou
,
J. E.
,
Tung
,
S.
,
Schneider
,
E.
, and
Xi
,
S.
,
2009
, “
A Review on Development of Nanofluid Preparation and Characterization
,”
Powder Technol.
,
196
(
2
), pp.
89
101
.10.1016/j.powtec.2009.07.025
12.
Ponangi
,
B. R.
,
Krishna
,
V.
, and
Seetharamu
,
K. N.
,
2021
, “
Effect of Ultra-Low Concentrated Reduced Graphene Oxide Nanofluid on Radiator Performance
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082501
.10.1115/1.4051233
13.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
,
Hishinuma
,
N.
, and
Ebata
,
Y.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2 and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
14.
Choi
,
S. U. S.
, and Eastman, J. A.,
1995
, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,”
Developments and Applications of Non-Newtonian Flows
, D. A. Siginer and H. P. Wang, Eds., ASME FED, San Francisco, CA,
66
, pp.
99
105
. https://www.osti.gov/servlets/purl/196525
15.
Hussein
,
A. M.
,
Sharma
,
K. V.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2013
, “
The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor Inside a Horizontal Tube
,”
J. Nanomater.
,
2013
, pp.
1
12
.10.1155/2013/859563
16.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Sarma
,
P. K.
,
Mamat
,
R.
, and
Anuar
,
S.
,
2014
, “
Comparison of Convective Heat Transfer Coefficient and Friction Factor of TiO2 Nanofluid Flow in a Tube With Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
81
, pp.
84
93
.10.1016/j.ijthermalsci.2014.03.002
17.
Ho
,
C. J.
,
Chang
,
C. Y.
,
Yan
,
W.-M.
, and
Amani
,
P.
,
2018
, “
A Combined Numerical and Experimental Study on the Forced Convection of Al2O3-Water Nanofluid in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
120
, pp.
66
75
.10.1016/j.ijheatmasstransfer.2017.12.031
18.
Lee
,
J.
,
Gharagozloo
,
P. E.
,
Kolade
,
B.
,
Eaton
,
J. K.
, and
Goodson
,
K. E.
,
2010
, “
Nanofluid Convection in Microtubes
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
9
), p.
092401
.
19.
Nabil
,
M. F.
,
Azmi
,
W. H.
,
Hamid
,
K. A.
, and
Mamat
,
R.
,
2018
, “
Experimental Investigation of Heat Transfer and Friction Factor of TiO2-SiO2 Nanofluids in Water:Ethylene Glycol Mixture
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1361
1369
.10.1016/j.ijheatmasstransfer.2018.04.143
20.
Abdolbaqi
,
M. K.
,
Azmi
,
W. H.
,
Mamat
,
R.
,
Sharma
,
K. V.
, and
Najafi
,
G.
,
2016
, “
Experimental Investigation of Thermal Conductivity and Electrical Conductivity of BioGlycol–Water Mixture Based Al2O3 Nanofluid
,”
Appl. Therm. Eng.
,
102
, pp.
932
941
.10.1016/j.applthermaleng.2016.03.074
21.
Ibrahim
,
M.
,
Saeed
,
T.
,
Chu
,
Y.-M.
,
Ali
,
H. M.
,
Cheraghian
,
G.
, and
Kalbasi
,
R.
,
2021
, “
Comprehensive Study Concerned Graphene Nano-Sheets Dispersed in Ethylene Glycol: Experimental Study and Theoretical Prediction of Thermal Conductivity
,”
Powder Technol.
,
386
, pp.
51
59
.10.1016/j.powtec.2021.03.028
22.
Pil Jang
,
S.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
5
), pp.
617
623
.10.1115/1.2712475
23.
Alqahtani
,
S.
,
Ali
,
H. M.
,
Farukh
,
F.
,
Silberschmidt
,
V. V.
, and
Kandan
,
K.
,
2021
, “
Thermal Performance of Additively Manufactured Polymer Lattices
,”
J. Build. Eng.
,
39
, p.
102243
.10.1016/j.jobe.2021.102243
24.
Qureshi
,
F. A.
,
Ahmad
,
N.
, and
Ali
,
H. M.
,
2021
, “
Heat Dissipation in Bituminous Asphalt Catalyzed by Different Metallic Oxide Nanopowders
,”
Constr. Build. Mater.
,
276
, p.
122220
.10.1016/j.conbuildmat.2020.122220
25.
Jamil
,
F.
,
Ali
,
H. M.
,
Nasir
,
M. A.
,
Karahan
,
M.
,
Janjua
,
M. M.
,
Naseer
,
A.
,
Ejaz
,
A.
, and
Pasha
,
R. A.
,
2021
, “
Evaluation of Photovoltaic Panels Using Different Nano Phase Change Material and a Concise Comparison: An Experimental Study
,”
Renewable Energy
,
169
, pp.
1265
1279
.10.1016/j.renene.2021.01.089
26.
Akram
,
N.
,
Montazer
,
E.
,
Kazi
,
S. N.
,
Soudagar
,
M. E. M.
,
Ahmed
,
W.
,
Zubir
,
M. N. M.
,
Afzal
,
A.
,
Muhammad
,
M. R.
,
Ali
,
H. M.
,
Márquez
,
F. P. G.
, and
Sarsam
,
W. S.
,
2021
, “
Experimental Investigations of the Performance of a Flat-Plate Solar Collector Using Carbon and Metal Oxides Based Nanofluids
,”
Energy
,
227
, p.
120452
.10.1016/j.energy.2021.120452
27.
Chu
,
Y.-M.
,
Yadav
,
D.
,
Shafee
,
A.
,
Li
,
Z.
, and
Bach
,
Q.-V.
,
2020
, “
Influence of Wavy Enclosure and Nanoparticles on Heat Release Rate of PCM Considering Numerical Study
,”
J. Mol. Liq.
,
319
, p.
114121
.10.1016/j.molliq.2020.114121
28.
Hao
,
X.
,
Peng
,
B.
,
Chen
,
Y.
, and
Xie
,
G.
,
2017
, “
Experimental Investigation on Heat Transfer Performance of a Flat Plate Heat Pipe With MWCNTS-Acetone Nanofluid
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p.
062001
.10.1115/1.4035446
29.
Gupta
,
N. K.
,
Tiwari
,
A. K.
, and
Ghosh
,
S. K.
,
2018
, “
Experimental Study of Thermal Performance of Nanofluid-Filled and Nanoparticles-Coated Mesh Wick Heat Pipes
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
102403
.10.1115/1.4040146
30.
Yadav
,
D.
,
2019
, “
Impact of Chemical Reaction on the Convective Heat Transport in Nanofluid Occupying in Porous Enclosures: A Realistic Approach
,”
Int. J. Mech. Sci.
,
157–158
, pp.
357
373
.10.1016/j.ijmecsci.2019.04.034
31.
Yadav
,
D.
,
Chu
,
Y.-M.
, and
Li
,
Z.
,
2021
, “
Examination of the Nanofluid Convective Instability of Vertical Constant Throughflow in a Porous Medium Layer With Variable Gravity
,”
Appl. Nanosci.
,
2021
, pp.
1
14
.10.1007/s13204-021-01700-2
32.
Yadav
,
D.
,
2020
, “
Numerical Solution of the Onset of Buoyancy-Driven Nanofluid Convective Motion in an Anisotropic Porous Medium Layer With Variable Gravity and Internal Heating
,”
Heat Transfer
,
49
(
3
), pp.
1170
1191
.10.1002/htj.21657
33.
Zuo
,
H.
,
Salahshoor
,
Z.
,
Yadav
,
D.
,
Hajizadeh
,
M. R.
, and
Vuong
,
B. X.
,
2020
, “
Investigation of Thermal Treatment of Hybrid Nanoparticles in a Domain With Different Permeabilities
,”
J. Therm. Anal. Calorim.
,
2020
, pp.
1
8
.10.1007/s10973-020-09824-3
34.
Li
,
H.
,
Ha
,
C. S.
, and
Kim
,
I.
,
2009
, “
Fabrication of Carbon Nanotube/SiO2 and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment
,”
Nanoscale Res. Lett.
,
4
(
11
), pp.
1384
1388
.10.1007/s11671-009-9409-4
35.
Shahrul
,
I. M.
,
Mahbubul
,
I. M.
,
Khaleduzzaman
,
S. S.
,
Saidur
,
R.
, and
Sabri
,
M. F. M.
,
2014
, “
A Comparative Review on the Specific Heat of Nanofluids for Energy Perspective
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
88
98
.10.1016/j.rser.2014.05.081
36.
Moldoveanu
,
G. M.
,
Huminic
,
G.
,
Minea
,
A. A.
, and
Huminic
,
A.
,
2018
, “
Experimental Study on Thermal Conductivity of Stabilized Al2O3 and SiO2 Nanofluids and Their Hybrid
,”
Int. J. Heat Mass Transfer
,
127
, pp.
450
457
.10.1016/j.ijheatmasstransfer.2018.07.024
37.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Nabil
,
M. F.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2018
, “
Experimental Investigation of Thermal Conductivity and Dynamic Viscosity on Nanoparticle Mixture Ratios of TiO2-SiO2 Nanofluids
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1143
1152
.10.1016/j.ijheatmasstransfer.2017.09.087
38.
Khdher
,
A. M.
,
Sidik
,
N. A. C.
,
Hamzah
,
W. A. W.
, and
Mamat
,
R.
,
2016
, “
An Experimental Determination of Thermal Conductivity and Electrical Conductivity of BioGlycol Based Al2O3 Nanofluids and Development of New Correlation
,”
Int. Commun. Heat Mass Transfer
,
73
, pp.
75
83
.10.1016/j.icheatmasstransfer.2016.02.006
39.
Abdolbaqi
,
M. K.
,
Sidik
,
N. A. C.
,
Aziz
,
A.
,
Mamat
,
R.
,
Azmi
,
W. H.
,
Yazid
,
M. N. A. W. M.
, and
Najafi
,
G.
,
2016
, “
An Experimental Determination of Thermal Conductivity and Viscosity of BioGlycol/Water Based TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
77
, pp.
22
32
.10.1016/j.icheatmasstransfer.2016.07.007
40.
Abdolbaqi
,
M. K.
,
Sidik
,
N. A. C.
,
Rahim
,
M. F. A.
,
Mamat
,
R.
,
Azmi
,
W. H.
,
Yazid
,
M. N. A. W. M.
, and
Najafi
,
G.
,
2016
, “
Experimental Investigation and Development of New Correlation for Thermal Conductivity and Viscosity of BioGlycol/Water Based SiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
77
, pp.
54
63
.10.1016/j.icheatmasstransfer.2016.07.001
41.
Dynalene
,
2020
,
Dynalene BioGlycol Technical Data Sheet
,
Dynalene
, Whitehall, PA.
42.
Bosch
,
S.
,
Cadore
,
A.
,
Faroon
,
O.
,
Harper
,
C.
,
Tylenda
,
C. A.
, and
Yu
,
D.
,
2010
,
Toxicological Profile for Ethylene Glycol
,
Department of Health and Human Services
, Atlanta, GA.
43.
Abdolbaqi
,
M. K.
,
Mamat
,
R.
,
Sidik
,
N. A. C.
,
Azmi
,
W. H.
, and
Selvakumar
,
P.
,
2017
, “
Experimental Investigation and Development of New Correlations for Heat Transfer Enhancement and Friction Factor of BioGlycol/Water Based TiO2 Nanofluids in Flat Tubes
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1026
1035
.10.1016/j.ijheatmasstransfer.2016.12.024
44.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Nabil
,
M. F.
, and
Mamat
,
R.
,
2018
, “
Experimental Investigation of Nanoparticle Mixture Ratios on TiO2–SiO2 Nanofluids Heat Transfer Performance Under Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
118
, pp.
617
627
.10.1016/j.ijheatmasstransfer.2017.11.036
45.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Sarma
,
P. K.
,
Mamat
,
R.
,
Anuar
,
S.
, and
Dharma Rao
,
V.
,
2013
, “
Experimental Determination of Turbulent Forced Convection Heat Transfer and Friction Factor With SiO2 Nanofluid
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
103
111
.10.1016/j.expthermflusci.2013.07.006
46.
Kamalgharibi
,
M.
,
Zamzamian
,
S. A.
, and
Hormozi
,
F.
,
2016
, “
Experimental Study of the Stability of Deionized Water Based Copper Oxide Nanofluid and Achievement to the Optimal Stability Conditions
,”
J. Mech. Eng. Amirkabir
,
48
(
1
), pp.
9
12
.https://www.sid.ir/en/journal/ViewPaper.aspx?id=529785
47.
Choudhary
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al2O3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
.10.1080/17458080.2017.1285445
48.
Manimaran
,
R.
,
Palaniradja
,
K.
,
Alagumurthi
,
N.
,
Sendhilnathan
,
S.
, and
Hussain
,
J.
,
2014
, “
Preparation and Characterization of Copper Oxide Nanofluid for Heat Transfer Applications
,”
Appl. Nanosci.
,
4
(
2
), pp.
163
167
.10.1007/s13204-012-0184-7
49.
Zawawi
,
N. N. M.
,
Azmi
,
W. H.
,
Redhwan
,
A. A. M.
,
Sharif
,
M. Z.
, and
Sharma
,
K. V.
,
2017
, “
Thermo-Physical Properties of Al2O3-SiO2/PAG Composite Nanolubricant for Refrigeration System
,”
Int. J. Refrig.
,
80
, pp.
1
10
.10.1016/j.ijrefrig.2017.04.024
50.
Vakilinejad
,
A.
,
Aroon
,
M. A.
,
Al-Abri
,
M.
,
Bahmanyar
,
H.
,
Myint
,
M. T. Z.
, and
Vakili-Nezhaad
,
G. R.
,
2018
, “
Experimental and Theoretical Investigation of Thermal Conductivity of Some Water-Based Nanofluids
,”
Chem. Eng. Commun.
,
205
(
5
), pp.
610
623
.10.1080/00986445.2017.1407922
51.
Azmi
,
W. H.
,
Hamid
,
K. A.
,
Usri
,
N. A.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2016
, “
Heat Transfer Augmentation of Ethylene Glycol: Water Nanofluids and Applications—A Review
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
13
23
.10.1016/j.icheatmasstransfer.2016.03.018
52.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
,
McGraw-Hill
,
New York
.
53.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Autombile Radiators of the Tubular Type
,
University of California
,
Berkeley, Berkeley, CA
.
54.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.https://ci.nii.ac.jp/naid/10024972801/
55.
Behabadi
,
A.
,
Pirhayati
,
M.
, and
Khayat
,
M.
,
2014
, “
Convective Heat Transfer of Oil Based Nanofluid Flow Inside a Circular Tube
,”
Int. J. Eng.
,
27
(
2
), pp.
341
348
.https://www.ije.ir/article_72260.html
56.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2016
, “
Experimental Investigation on Heat Transfer Performance of TiO2 Nanofluids in Water–Ethylene Glycol Mixture
,”
Int. Commun. Heat Mass Transfer
,
73
, pp.
16
24
.10.1016/j.icheatmasstransfer.2016.02.009
57.
Blasius
,
H.
,
1913
, “
Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten
,”
Mitteilungen ber Forschungsarbeiten uf em Gebiete es Ingenieurwesens
,
Springer
,
Berlin, Heidelberg, Germany
, pp.
1
41
.
58.
Petukhov
,
B.
,
Irvine
,
T.
, and
Hartnett
,
J.
,
1970
,
Advances in Heat Transfer
, Vol.
6
,
Academic
,
New York
, pp.
503
564
.
59.
Beckwith
,
T. G.
,
Marangoni
,
R. D.
, and
Lienhard
,
J. H.
,
1993
,
Mechanical Measurements
,
Addison-Wesley
,
Reading, MA
.
60.
Zakaria
,
I.
,
Mohamed
,
W. A. N. W.
,
Azmi
,
W. H.
,
Mamat
,
A. M. I.
,
Mamat
,
R.
, and
Daud
,
W. R. W.
,
2018
, “
Thermo-Electrical Performance of PEM Fuel Cell Using Al2O3 Nanofluids
,”
Int. J. Heat Mass Transfer
,
119
, pp.
460
471
.10.1016/j.ijheatmasstransfer.2017.11.137
61.
Abdolbaqi
,
M. K.
,
Azmi
,
W. H.
,
Mamat
,
R.
,
Mohamed
,
N. M. Z. N.
, and
Najafi
,
G.
,
2016
, “
Experimental Investigation of Turbulent Heat Transfer by Counter and Co-Swirling Flow in a Flat Tube Fitted With Twin Twisted Tapes
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
295
302
.10.1016/j.icheatmasstransfer.2016.04.021
62.
Raja
,
P. M. V.
, and
Barron
,
A. R.
,
2020
,
Rice University Physical Methods in Chemistry and Nano Science
,
LibreTexts
, CA.
63.
Ahmadi
,
M. H.
,
Mirlohi
,
A.
,
Alhuyi Nazari
,
M.
, and
Ghasempour
,
R.
,
2018
, “
A Review of Thermal Conductivity of Various Nanofluids
,”
J. Mol. Liq.
,
265
, pp.
181
188
.10.1016/j.molliq.2018.05.124
64.
Sadeghinezhad
,
E.
,
Togun
,
H.
,
Mehrali
,
M.
,
Sadeghi Nejad
,
P.
,
Tahan Latibari
,
S.
,
Abdulrazzaq
,
T.
,
Kazi
,
S. N.
, and
Metselaar
,
H. S. C.
,
2015
, “
An Experimental and Numerical Investigation of Heat Transfer Enhancement for Graphene Nanoplatelets Nanofluids in Turbulent Flow Conditions
,”
Int. J. Heat Mass Transfer
,
81
, pp.
41
51
.10.1016/j.ijheatmasstransfer.2014.10.006
65.
Sheikhzadeh
,
G. A.
,
Barzoki
,
F. N.
,
Arani
,
A. A. A.
, and
Pourfattah
,
F.
,
2019
, “
Wings Shape Effect on Behavior of Hybrid Nanofluid Inside a Channel Having Vortex Generator
,”
Heat Mass Transfer
,
55
(
7
), pp.
1969
1983
.10.1007/s00231-018-2489-x
66.
Mohammed
,
H. A.
,
Hasan
,
H. A.
, and
Wahid
,
M. A.
,
2013
, “
Heat Transfer Enhancement of Nanofluids in a Double Pipe Heat Exchanger With Louvered Strip Inserts
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
36
46
.10.1016/j.icheatmasstransfer.2012.10.023
67.
Asirvatham
,
L. G.
,
Vishal
,
N.
,
Gangatharan
,
S. K.
, and
Lal
,
D. M.
,
2009
, “
Experimental Study on Forced Convective Heat Transfer With Low Volume Fraction of CuO/Water Nanofluid
,”
Energies
,
2
(
1
), pp.
97
119
.10.3390/en20100097
68.
Azmi
,
W. H.
,
Usri
,
N. A.
,
Mamat
,
R.
,
Sharma
,
K. V.
, and
Noor
,
M. M.
,
2017
, “
Force Convection Heat Transfer of Al2O3 Nanofluids for Different Based Ratio of Water: Ethylene Glycol Mixture
,”
Appl. Therm. Eng.
,
112
, pp.
707
719
.10.1016/j.applthermaleng.2016.10.135
You do not currently have access to this content.