Abstract

For oscillating heat pipes (OHPs) with low turn number (<9) positioned in the horizontal direction, the working fluid could not easily flow back to the evaporator due to the absence of gravity. Based on this, copper OHP with superhydrophilic micro-/nanostructured surface was investigated to enhance the heat transfer performance by introducing additional capillary force. OHPs with six turns were fabricated with bare copper and micro-/nanostructured inner surfaces for comparison. Pure water was used as the working fluid. Contact angles of water on the copper and superhydrophilic surfaces were 36.7 and 0 deg, respectively. The filling ratios of water were 50%, 65%, and 80%, respectively. Thermal resistance and liquid slug oscillations of OHPs were investigated at the heat input ranging from 100 to 380 W. Experimental results showed that OHPs with the superhydrophilic micro-/nanostructured surface showed an enhanced heat transfer performance due to the micro-/nanostructure-induced capillary flow in the horizontal direction. The optimum filling ratio was 65% in this work. The superhydrophilic micro-/nanostructured surface could significantly facilitate the backflow of the working fluid to the evaporator section and accelerate oscillating motions of liquid slugs. With the increasing of 0–70% in slug oscillating amplitude and 0–100% in slug oscillating velocity, micro-/nanostructured OHPs improved the heat transfer performance by up to 10% compared with the copper OHPs due to the wicking effect.

References

1.
Song
,
Y. X.
, and
Xu
,
J. L.
,
2009
, “
Chaotic Behavior of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2932
2941
.10.1016/j.ijheatmasstransfer.2009.02.030
2.
Jun
,
S.
, and
Kim
,
S. J.
,
2016
, “
Comparison of the Thermal Performances and Flow Characteristics Between Closed-Loop and Closed-End Micro Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
95
, pp.
890
901
.10.1016/j.ijheatmasstransfer.2015.12.064
3.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes: Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.10.1016/S1359-4311(03)00159-5
4.
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
A Mathematical Model of an Oscillating Heat Pipe
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1037
1046
.10.1080/01457632.2011.556495
5.
Ma
,
H. B.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
6.
Kim
,
Y. B.
,
Song
,
H. W.
, and
Sung
,
J.
,
2018
, “
Flow Behavior of Rapid Thermal Oscillation Inside an Asymmetric Micro Pulsating Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
120
, pp.
923
929
.10.1016/j.ijheatmasstransfer.2017.12.101
7.
Yang
,
K. S.
,
Cheng
,
Y. C.
,
Liu
,
M. C.
, and
Shyu
,
J. C.
,
2015
, “
Micro Pulsating Heat Pipes With Alternate Microchannel Widths
,”
Appl. Therm. Eng.
,
83
, pp.
131
138
.10.1016/j.applthermaleng.2015.03.020
8.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
, pp.
817
828
.10.1016/j.ijheatmasstransfer.2015.05.091
9.
Tseng
,
C. Y.
,
Yang
,
K. S.
,
Chien
,
K. H.
,
Jeng
,
M. S.
, and
Wang
,
C. C.
,
2014
, “
Investigation of the Performance of Pulsating Heat Pipe Subject to Uniform/Alternating Tube Diameters
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
85
92
.10.1016/j.expthermflusci.2014.01.019
10.
Chai
,
L.
,
Xia
,
G. D.
,
Wang
,
L.
,
Zhou
,
M. Z.
, and
Cui
,
Z. Z.
,
2013
, “
Heat Transfer Enhancement in Microchannel Heat Sinks With Periodic Expansion-Constriction Cross-Sections
,”
Int. J. Heat Mass Transfer
,
62
, pp.
741
751
.10.1016/j.ijheatmasstransfer.2013.03.045
11.
Chien
,
K. H.
,
Lin
,
Y. T.
,
Chen
,
Y.-R.
,
Yang
,
K. S.
, and
Wang
,
C. C.
,
2012
, “
A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5722
5728
.10.1016/j.ijheatmasstransfer.2012.05.068
12.
Chiang
,
C.-M.
,
Chien
,
K.-H.
,
Chen
,
H.-M.
, and
Wang
,
C.-C.
,
2012
, “
Theoretical Study of Oscillatory Phenomena in a Horizontal Closed-Loop Pulsating Heat Pipe With Asymmetrical Arrayed Minichannel
,”
Int. Commun Heat Mass
,
39
(
7
), pp.
923
930
.10.1016/j.icheatmasstransfer.2012.05.019
13.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.10.1016/j.ijheatmasstransfer.2011.04.030
14.
Smoot
,
C. D.
, and
Ma
,
H. B.
,
2014
, “
Experimental Investigation of a Three-Layer Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051501
.10.1115/1.4026217
15.
Gennes
,
P.-G. D.
,
Brochard-Wyart
,
F.
, and
Quere
,
D.
,
2004
,
Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves.
Springer
, New York.
16.
Kim
,
S. H.
,
Lee
,
G. C.
,
Kang
,
J. Y.
,
Moriyama
,
K.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2015
, “
Boiling Heat Transfer and Critical Heat Flux Evaluation of the Pool Boiling on Micro Structured Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1140
1147
.10.1016/j.ijheatmasstransfer.2015.07.120
17.
Son
,
H. H.
,
Seo
,
G. H.
,
Jeong
,
U.
,
Shin
,
D. Y.
, and
Kim
,
S. J.
,
2017
, “
Capillary Wicking Effect of a Cr-Sputtered Superhydrophilic Surface on Enhancement of Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
113
, pp.
115
128
.10.1016/j.ijheatmasstransfer.2017.05.055
18.
Wen
,
R.
,
Xu
,
S.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2018
, “
Capillary-Driven Liquid Film Boiling Heat Transfer on Hybrid Mesh Wicking Structures
,”
Nano Energy
,
51
, pp.
373
382
.10.1016/j.nanoen.2018.06.063
19.
Faghri
,
A.
,
2016
,
Heat Pipe Science and Technology
,
Global Digital Press
.
20.
Xu
,
P.
, and
Li
,
Q.
,
2017
, “
Visualization Study on the Enhancement of Heat Transfer for the Groove Flat-Plate Heat Pipe With Nanoflower Coated CuO Layer
,”
Appl. Phys. Lett.
,
111
(
14
), p.
141609
.10.1063/1.4986318
21.
Ji
,
Y. L.
,
Xu
,
C.
,
Ma
,
H. B.
, and
Xiang
,
P. X.
,
2013
, “
An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface
,”
ASME J. Heat Transfer
,
135
, p.
074504
.10.1115/1.4023749
22.
Zhang
,
F. Z.
,
Winholtz
,
R. A.
,
Black
,
W. J.
,
Wilson
,
M. R.
,
Taub
,
H.
, and
Ma
,
H. B.
,
2016
, “
Effect of Hydrophilic Nanostructured Cupric Oxide Surfaces on the Heat Transport Capability of a Flat-Plate Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
138
(
6
), p.
062901
.10.1115/1.4032608
23.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
,
Zhao
,
Y.
, and
Ma
,
H.
,
2014
, “
Effects of Hydrophilic Surface on Heat Transfer Performance and Oscillating Motion for an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
72
, pp.
50
65
.10.1016/j.ijheatmasstransfer.2014.01.007
24.
Hao
,
T.
,
Ma
,
X.
, and
Lan
,
Z.
,
2017
, “
Effects of Hydrophilic and Hydrophobic Surfaces on Start-Up Performance of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
140
(
1
), p.
012002
10.1115/1.4034064.
25.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
, and
Zhao
,
Y.
,
2014
, “
Effects of Superhydrophobic and Superhydrophilic Surfaces on Heat Transfer and Oscillating Motion of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
8
), p.
082001
.10.1115/1.4027390
26.
Kim
,
W.
, and
Kim
,
S. J.
,
2018
, “
Effect of Reentrant Cavities on the Thermal Performance of a Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
133
, pp.
61
69
.10.1016/j.applthermaleng.2018.01.027
27.
Qu
,
J.
,
Li
,
X.
,
Wang
,
Q.
,
Liu
,
F.
, and
Guo
,
H.
,
2017
, “
Heat Transfer Characteristics of Micro-Grooved Oscillating Heat Pipes
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
75
84
.10.1016/j.expthermflusci.2017.02.022
28.
Qu
,
J.
,
Li
,
X.
,
Xu
,
Q.
, and
Wang
,
Q.
,
2017
, “
Thermal Performance Comparison of Oscillating Heat Pipes With and Without Helical Micro-Grooves
,”
Heat Mass Transfer
,
53
(
11
), pp.
3383
3390
.10.1007/s00231-017-2082-8
29.
Qu
,
J.
,
Sun
,
Q.
,
Wang
,
H.
,
Zhang
,
D.
, and
Yuan
,
J.
,
2019
, “
Performance Characteristics of Flat-Plate Oscillating Heat Pipe With Porous Metal-Foam Wicks
,”
Int. J. Heat Mass Transfer
,
137
, pp.
20
30
.10.1016/j.ijheatmasstransfer.2019.03.107
30.
Wang
,
H.
,
Qu
,
J.
,
Peng
,
Y.
, and
Sun
,
Q.
,
2019
, “
Heat Transfer Performance of a Novel Tubular Oscillating Heat Pipe With Sintered Copper Particles Inside Flat-Plate Evaporator and High-Power LED Heat Sink Application
,”
Energy Convers. Manage.
,
189
, pp.
215
222
.10.1016/j.enconman.2019.03.093
31.
Lin
,
Y.-H.
,
Kang
,
S.-W.
, and
Wu
,
T.-Y.
,
2009
, “
Fabrication of Polydimethylsiloxane (PDMS) Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
573
580
.10.1016/j.applthermaleng.2008.03.028
You do not currently have access to this content.