Abstract

This paper presents a heuristic optimization method for cooling channels with internal repeated-rib roughness. The method rapidly explores a design space to simultaneously optimize two geometric parameters, channel length, and rib roughness ratio. For a rapid and accurate optimization, the method combines a heuristic optimization technique, simulated annealing (SA), and numerically derived closed-form models of heat transfer and pressure drop. It is shown that approximately 1 million designs are evaluated within 6 s, resulting in optimal designs having minimal thermal resistance for given pressure thresholds. Closed-form correlations for developing and fully developed flow are derived by evaluating discrete design points using a finite volume model (FVM). The derived correlations predict the channel properties with acceptable ranges of mean absolute error (<5% for Nusselt number and < 15% for pressure drop) against the FVM. Optimal channel designs exhibit up to about 12 times greater performance factor compared to smooth channels, supporting the efficacy of optimization. The introduced method demonstrates the potential of rapid numerical optimization method in designing heat transfer devices with complex geometries.

References

1.
Hwang
,
L. K.
,
Kwon
,
B.
, and
Wong
,
M. D. F.
,
2019
, “
Optimization of Liquid Cooling MicroChannel in 3D IC Using Complete Converging and Diverging Channel Models
,”
18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
Las Vegas, NV
, May 28–31, pp.
1197
1203
.10.1109/ITHERM.2019.8757254
2.
Mahalingam
,
M.
,
1985
, “
Thermal Management in Semiconductor Device Packaging
,”
Proc. IEEE
,
73
(
9
), pp.
1396
1404
.10.1109/PROC.1985.13300
3.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manag.
,
103
, pp.
157
165
.10.1016/j.enconman.2015.06.056
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
5.
Kandlikar
,
S. G.
, and
Hayner
,
C. N.
,
2009
, “
Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices Thermal Design and Manufacturing Considerations
,”
Heat Transfer Eng.
,
30
(
12
), pp.
918
930
.10.1080/01457630902837343
6.
Kwon
,
B.
,
Foulkes
,
T.
,
Yang
,
T.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2019
, “
Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
2
), pp.
220
229
.10.1109/TCPMT.2019.2936852
7.
Kwon
,
B.
,
Liebenberg
,
L.
,
Jacobi
,
A. M.
, and
King
,
W. P.
,
2019
, “
Heat Transfer Enhancement of Internal Laminar Flows Using Additively Manufactured Static Mixers
,”
Int. J. Heat Mass Transfer
,
137
, pp.
292
300
.10.1016/j.ijheatmasstransfer.2019.03.133
8.
Kang
,
M.
,
Hwang
,
L. K.
, and
Kwon
,
B.
,
2020
, “
Computationally Efficient Optimization of Wavy Surface Roughness in Cooling Channels Using Simulated Annealing
,”
Int. J. Heat Mass Transfer
,
150
, p.
119300
.10.1016/j.ijheatmasstransfer.2019.119300
9.
Alfarawi
,
S.
,
Abdel-Moneim
,
S. A.
, and
Bodalal
,
A.
,
2017
, “
Experimental Investigations of Heat Transfer Enhancement From Rectangular Duct Roughened by Hybrid Ribs
,”
Int. J. Therm. Sci.
,
118
, pp.
123
138
.10.1016/j.ijthermalsci.2017.04.017
10.
Jian
,
L.
,
Xie
,
G.
,
Sunden
,
B. A.
,
Wang
,
L.
, and
Andersson
,
M.
,
2017
, “
Enhancement of Heat Transfer in a Square Channel by Roughened Surfaces in Rib-Elements and Turbulent Flow Manipulation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
7
), pp.
1571
1595
.10.1108/HFF-03-2016-0120
11.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,”
Int. J. Heat Mass Transfer
,
14
(
4
), pp.
601
617
.10.1016/0017-9310(71)90009-3
12.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.10.1016/0017-9310(80)90177-5
13.
Karwa
,
R.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2001
, “
Thermo-Hydraulic Performance of Solar Air Heaters Having Integral Chamfered Rib Roughness on Absorber Plates
,”
Energy
,
26
(
2
), pp.
161
176
.10.1016/S0360-5442(00)00062-1
14.
Aliaga
,
D. A.
,
Lamb
,
J. P.
, and
Klein
,
D. E.
,
1994
, “
Convection Heat Transfer Distributions Over Plates With Square Ribs From Infrared Thermography Measurements
,”
Int. J. Heat Mass Transfer
,
37
(
3
), pp.
363
374
.10.1016/0017-9310(94)90071-X
15.
Ravigururajan
,
T. S.
, and
Bergles
,
A. E.
,
1996
, “
Development and Verification of General Correlations for Pressure Drop and Heat Transfer in Single-Phase Turbulent Flow in Enhanced Tubes
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
55
70
.10.1016/0894-1777(96)00014-3
16.
Lee
,
C. K.
, and
Abdel-Moneim
,
S. A.
,
2001
, “
Computational Analysis of the Heat Transfer in Turbulent Flow Past a Horizontal Surface With Two-Dimensional Ribs
,”
Int. Commun. Heat Mass Transfer
,
28
(
2
), pp.
161
170
.10.1016/S0735-1933(01)00223-8
17.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.10.1016/j.solener.2016.02.040
18.
Khan
,
A. A.
,
Kim
,
S. M.
, and
Kim
,
K. Y.
,
2016
, “
Performance Analysis of a Microchannel Heat Sink With Various Rib Configurations
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
782
790
.10.2514/1.T4663
19.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.10.1016/0017-9310(88)90235-9
20.
Jaurker
,
A. R.
,
Saini
,
J. S.
, and
Gandhi
,
B. K.
,
2006
, “
Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness
,”
Sol. Energy
,
80
(
8
), pp.
895
907
.10.1016/j.solener.2005.08.006
21.
Sabry
,
M. M.
,
Sridhar
,
A.
, and
Atienza
,
D.
,
2012
, “
Thermal Balancing of Liquid-Cooled 3D-MPSoCs Using Channel Modulation
,”
Proceedings of Design, Automation and Test in Europe Conference & Exhibition (DATE)
,
Dresden, Germany
, Mar. 12–16, pp.
599
604
.10.1109/DATE.2012.6176543
22.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.10.1108/09615530510571921
23.
Li
,
J.
, and
Peterson
,
G. P.
,
2006
, “
Geometric Optimization of a Micro Heat Sink With Liquid Flow
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
1
), pp.
145
154
.10.1109/TCAPT.2005.853170
24.
Li
,
J.
, and
Peterson
,
G. P.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2895
2904
.10.1016/j.ijheatmasstransfer.2007.01.019
25.
Zingg
,
D. W.
,
Nemec
,
M.
, and
Pulliam
,
T. H.
,
2008
, “
A Comparative Evaluation of Genetic and Gradient-Based Algorithms Applied to Aerodynamic Optimization
,”
Eur. J. Comput. Mech.
,
17
(
1–2
), pp.
103
126
.10.3166/remn.17.103-126
26.
Hwang
,
L.
,
Kwon
,
B.
, and
Wong
,
M.
,
2018
, “
Accurate Models for Optimizing Tapered Microchannel Heat Sinks in 3D ICs
,”
IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
,
Hong Kong, China
, July 8–11, pp.
58
63
.10.1109/ISVLSI.2018.00021
27.
Kim
,
D. K.
, and
Kim
,
S. J.
,
2007
, “
Closed-Form Correlations for Thermal Optimization of Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5318
5322
.10.1016/j.ijheatmasstransfer.2007.07.034
28.
Husain
,
A.
, and
Kim
,
K. Y.
,
2008
, “
Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
322
330
.10.1109/TCAPT.2008.916791
29.
Husain
,
A.
, and
Kim
,
K. Y.
,
2013
, “
Design Optimization of Manifold Microchannel Heat Sink Through Evolutionary Algorithm Coupled With Surrogate Model
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
4
), pp.
617
624
.10.1109/TCPMT.2013.2245943
30.
Chen
,
C. W.
,
Lee
,
J. J.
, and
Kou
,
H. S.
,
2008
, “
Optimum Thermal Design of Microchannel Heat Sinks by the Simulated Annealing Method
,”
Int. Commun. Heat Mass Transf.
,
35
(
8
), pp.
980
984
.10.1016/j.icheatmasstransfer.2008.04.006
31.
Selim
,
S. Z.
, and
Alsultan
,
K.
,
1991
, “
A Simulated Annealing Algorithm for the Clustering Problem
,”
Pattern Recognit.
,
24
(
10
), pp.
1003
1008
.10.1016/0031-3203(91)90097-O
32.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B. W.
, and
Woolford
,
B.
,
2006
, “
Laminar Flow in a Microchannel With Superhydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
,
18
(
8
), p.
087110
.10.1063/1.2336453
33.
Acharya
,
S.
,
Myrum
,
T.
,
Qiu
,
X.
, and
Sinha
,
S.
,
1997
, “
Developing and Periodically Developed Flow, Temperature and Heat Transfer in a Ribbed Duct
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
461
479
.10.1016/0017-9310(96)00033-6
34.
Won
,
S. Y.
, and
Ligrani
,
P. M.
,
2004
, “
Comparisons of Flow Structure and Local Nusselt Numbers in Channels With Parallel- and Crossed-Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1573
1586
.10.1016/j.ijheatmasstransfer.2003.10.026
You do not currently have access to this content.