Abstract

A numerical study on the mixed convection of Al2O3–water nanofluid in a lid-driven inclined square enclosure partially heated from below is performed based on Buongiorno's two phase model. The velocity of the nanoparticles relative to the base fluid is considered due to thermophoresis and Brownian diffusion. The thermophysical properties of the nanofluid are assumed to be dependent on temperature as well as the nanoparticle volume fraction. A control volume method over a staggered grid arrangement is used to discretize the governing equations. The discretized equations of two-dimensional continuity, momentum, energy, and volume fraction are solved through a pressure-correction-based semi-implicit method for pressure linked equations (SIMPLE) algorithm. The effects of relevant parameters such as nanoparticle diameter (25 nm ≤ dp ≤ 90 nm), Richardson number (0.1Ri5), nanoparticle bulk volume fraction (0 φb 0.05) on the mixed convection of the nanofluid is studied by considering the inclination angle of the enclosure to vary between 0 deg and 60 deg. The entropy generation as well as the Bejan number is evaluated to illustrate the thermodynamic optimization of the mixed convection. Both the heat transfer and entropy generation are higher in the nanofluid compared to the clear fluid and the rate of increment in entropy generation remains lower than the rate by which the heat transfer is augmented in the nanofluid. We find that due to the presence of the Brownian diffusion and thermophoresis in the nonhomogeneous model, a higher heat transfer is yielded as compared to the homogeneous model. The discrepancy between the homogeneous and nonhomogeneous models is significant when the mixed convection is dominated by the shear force. When the mixed convection is dominated by the thermal buoyancy, an increase in positive inclination angle of the enclosure creates a significant increment in the heat transfer.

References

1.
Sivasankaran
,
S.
,
Sivakumar
,
V.
, and
Hussein
,
A. K.
,
2013
, “
Numerical Study on Mixed Convection in an Inclined Lid-Driven Cavity With Discrete Heating
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
112
125
.10.1016/j.icheatmasstransfer.2013.05.022
2.
Öztop
,
H. F.
,
Estellé
,
P.
,
Yan
,
W. M.
,
Al-Salem
,
K.
,
Orfi
,
J.
, and
Mahian
,
O.
,
2015
, “
A Brief Review of Natural Convection in Enclosures Under Localized Heating With and Without Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
60
, pp.
37
44
.10.1016/j.icheatmasstransfer.2014.11.001
3.
Das
,
D.
, and
Basak
,
T.
,
2016
, “
Role of Distributed/Discrete Solar Heaters During Natural Convection in the Square and Triangular Cavities: CFD and Heatline Simulations
,”
Sol. Energy
,
135
, pp.
130
153
.10.1016/j.solener.2016.04.045
4.
Mehmood
,
K.
,
Hussain
,
S.
, and
Sagheer
,
M.
,
2017
, “
Mixed Convection in Alumina-Water Nanofluid Filled Lid-Driven Square Cavity With an Isothermally Heated Square Blockage Inside With Magnetic Field Effect: Introduction
,”
Int. J. Heat Mass Transfer
,
109
, pp.
397
409
.10.1016/j.ijheatmasstransfer.2017.01.117
5.
Nithyadevi
,
N.
,
Kandaswamy
,
P.
, and
Lee
,
J.
,
2007
, “
Natural Convection in a Rectangular Cavity With Partially Active Side Walls
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4688
4697
.10.1016/j.ijheatmasstransfer.2007.03.050
6.
Cheikh
,
N. B.
,
Beya
,
B. B.
, and
Lili
,
T.
,
2007
, “
Influence of Thermal Boundary Conditions on Natural Convection in a Square Enclosure Partially Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
369
379
.10.1016/j.icheatmasstransfer.2006.11.001
7.
Kaluri
,
R. S.
,
Basak
,
T.
, and
Roy
,
S.
,
2010
, “
Heatline Approach for Visualization of Heat Flow and Efficient Thermal Mixing With Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3241
3261
.10.1016/j.ijheatmasstransfer.2010.03.002
8.
Kuznetsov
,
G. V.
, and
Sheremet
,
M. A.
,
2011
, “
Conjugate Natural Convection in an Enclosure With a Heat Source of Constant Heat Transfer Rate
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
260
268
.10.1016/j.ijheatmasstransfer.2010.09.046
9.
Muftuoglu
,
A.
, and
Bilgen
,
E.
,
2008
, “
Conjugate Heat Transfer in Open Cavities With a Discrete Heater at Its Optimized Position
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
779
788
.10.1016/j.ijheatmasstransfer.2007.04.017
10.
Ismael
,
M. A.
,
Pop
,
I.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection in a Lid-Driven Square Cavity With Partial Slip
,”
Int. J. Therm. Sci.
,
82
, pp.
47
61
.10.1016/j.ijthermalsci.2014.03.007
11.
Esfe
,
M. H.
,
Saedodin
,
S.
,
Malekshah
,
E. H.
,
Babaie
,
A.
, and
Rostamian
,
H.
,
2019
, “
Mixed Convection Inside Lid-Driven Cavities Filled With Nanofluids
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
813
859
.10.1007/s10973-018-7519-x
12.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Argonne National Laboratory
,
Lemont, IL
, Report No. ANL/MSD/CP-84938; CONF-951135-29.
13.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.10.1115/1.1532008
14.
Basak
,
T.
, and
Chamkha
,
A. J.
,
2012
, “
Heatline Analysis on Natural Convection for Nanofluids Confined Within Square Cavities With Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5526
5543
.10.1016/j.ijheatmasstransfer.2012.05.025
15.
Rao
,
S. S.
, and
Srivastava
,
A.
,
2016
, “
Interferometric Study of Natural Convection in a Differentially-Heated Cavity With Al2O3–Water Based Dilute Nanofluids
,” Int.
J. Heat Mass Transfer
,
92
, pp.
1128
1142
.10.1016/j.ijheatmasstransfer.2015.09.074
16.
Choi
,
S. K.
,
Kim
,
S. O.
,
Lee
,
T. H.
, and
Dohee
,
H.
,
2014
, “
Computation of the Natural Convection of Nanofluid in a Square Cavity With Homogeneous and Nonhomogeneous Models
,”
Numer. Heat Transf., Part A.
,
65
(
4
), pp.
287
301
.10.1080/10407782.2013.831695
17.
Haddad
,
Z.
,
Oztop
,
H. F.
,
Abu-Nada
,
E.
, and
Mataoui
,
A.
,
2012
, “
A Review on Natural Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5363
5378
.10.1016/j.rser.2012.04.003
18.
Nayak
,
R. K.
,
Bhattacharyya
,
S.
, and
Pop
,
I.
,
2016
, “
Heat Transfer and Entropy Generation in Mixed Convection of a Nanofluid Within an Inclined Skewed Cavity
,”
Int. J. Heat Mass Transfer
,
102
, pp.
596
609
.10.1016/j.ijheatmasstransfer.2016.06.049
19.
Nasrin
,
R.
,
Alim
,
M. A.
, and
J. Chamkha
,
A.
,
2013
, “
Modeling of Mixed Convective Heat Transfer Utilizing Nanofluid in a Double Lid-Driven Chamber With Internal Heat Generation
,”
Int. J. Numer. Method H.
,
24
(
1
), pp.
36
57
.10.1108/HFF-11-2011-0239
20.
Alsabery
,
A.
,
Ismael
,
M.
,
Chamkha
,
A.
, and
Hashim
,
I.
,
2018
, “
Numerical Investigation of Mixed Convection and Entropy Generation in a Wavy-Walled Cavity Filled With Nanofluid and Involving a Rotating Cylinder
,”
Entropy
,
20
(
9
), p.
664
.10.3390/e20090664
21.
Cho
,
C. C.
,
2014
, “
Heat Transfer and Entropy Generation of Natural Convection in Nanofluid-Filled Square Cavity With Partially-Heated Wavy Surface
,”
Int. J. Heat Mass Transfer
,
77
, pp.
818
827
.10.1016/j.ijheatmasstransfer.2014.05.063
22.
Ben-Cheikh
,
N.
,
Chamkha
,
A. J.
,
Ben-Beya
,
B.
, and
Lili
,
T.
,
2013
, “
Natural Convection of Water-Based Nanofluids in a Square Enclosure With Non-Uniform Heating of the Bottom Wall
,”
J. Mod. Phys.
,
4
(
2
), p.
147
.10.4236/jmp.2013.42021
23.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
24.
Ben-Mansour
,
R.
, and
Habib
,
M. A.
,
2013
, “
Use of Nanofluids for Improved Natural Cooling of Discretely Heated Cavities
,”
Adv. Mech. Eng.
,
5
, p.
383267
.10.1155/2013/383267
25.
Ahmed
,
S. E.
,
Mansour
,
M. A.
,
Hussein
,
A. K.
, and
Sivasankaran
,
S.
,
2016
, “
Mixed Convection From a Discrete Heat Source in Enclosures With Two Adjacent Moving Walls and Filled With Micropolar Nanofluids
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
364
376
.10.1016/j.jestch.2015.08.005
26.
Sivakumar
,
V.
,
Sivasankaran
,
S.
,
Prakash
,
P.
, and
Lee
,
J.
,
2010
, “
Effect of Heating Location and Size on Mixed Convection in Lid-Driven Cavities
,”
Comput. Math. Appl.
,
59
(
9
), pp.
3053
3065
.10.1016/j.camwa.2010.02.025
27.
Oztop
,
H. F.
,
Abu-Nada
,
E.
,
Varol
,
Y.
, and
Chamkha
,
A.
,
2011
, “
Natural Convection in Wavy Enclosures With Volumetric Heat Sources
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
502
514
.10.1016/j.ijthermalsci.2010.10.015
28.
Parvin
,
S.
, and
Chamkha
,
A. J.
,
2014
, “
An Analysis on Free Convection Flow, Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled With Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
8
17
.10.1016/j.icheatmasstransfer.2014.02.031
29.
Mansour
,
M. A.
,
Bakeir
,
M. A.
, and
Chamkha
,
A.
,
2014
, “
Natural Convection Inside a C-Shaped Nanofluid-Filled Enclosure With Localized Heat Sources
,”
Int. J. Numer. Method H.
,
24
(
8
), pp.
1954
1978
.10.1108/HFF-06-2013-0198
30.
Mohebbi
,
R.
,
Izadi
,
M.
, and
Chamkha
,
A. J.
,
2017
, “
Heat Source Location and Natural Convection in a C-Shaped Enclosure Saturated by a Nanofluid
,”
Phys. Fluids
,
29
(
12
), p.
122009
.10.1063/1.4993866
31.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection Flow of a Nanofluid in a Lid-Driven Cavity With a Wavy Wall
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
36
47
.10.1016/j.icheatmasstransfer.2014.07.013
32.
Buongiorno
,
J.
,
2005
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
33.
Alsabery
,
A. I.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2018
, “
Mixed Convection of Al2O3-Water Nanofluid in a Double Lid-Driven Square Cavity With a Solid Inner Insert Using Buongiorno's Two-Phase Model
,”
Int. J. Heat Mass Transfer
,
119
, pp.
939
961
.10.1115/1.2150834
34.
Kang
,
H. U.
,
Kim
,
W. G.
, and
Kim
,
S. H.
,
2007
, “
Effect of Particle Migration on the Heat Transfer of Nanofluid
,”
Korea-Aust Rheol. J.
,
19
(
3
), pp.
99
107
.
35.
Abu-Nada
,
E.
,
2010
, “
Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052401
.10.1115/1.4000440
36.
Alsabery
,
A. I.
,
Yazdi
,
M. H.
,
Altawallbeh
,
A. A.
, and
Hashim
,
I.
,
2019
, “
Effects of Nonhomogeneous Nanofluid Model on Convective Heat Transfer in Partially Heated Square Cavity With Conducting Solid Block
,”
J. Therm. Anal. Calorim.
,
136
(
4
), pp.
1489
1514
.10.1007/s10973-018-7789-3
37.
Pakravan
,
H. A.
, and
Yaghoubi
,
M.
,
2013
, “
Analysis of Nanoparticles Migration on Natural Convective Heat Transfer of Nanofluids
,”
Int. J. Therm. Sci.
,
68
, pp.
79
93
.10.1016/j.ijthermalsci.2012.12.012
38.
Esfandiary
,
M.
,
Mehmandoust
,
B.
,
Karimipour
,
A.
, and
Pakravan
,
H. A.
,
2018
, “
Natural Convection of Al2O3–Water Nanofluid in an Inclined Enclosure With the Effects of Slip Velocity Mechanisms: Brownian Motion and Thermophoresis Phenomenon
,”
Int. J. Therm. Sci.
,
105
, pp.
137
158
.
39.
Motlagh
,
S. Y.
, and
Soltanipour
,
H.
,
2017
, “
Natural Convection of Al2O3-Water Nanofluid in an Inclined Cavity Using Buongiorno's Two-Phase Model
,”
Int. J. Therm. Sci.
,
111
, pp.
310
320
.10.1016/j.ijthermalsci.2016.08.022
40.
Garoosi
,
F.
,
Garoosi
,
S.
, and
Hooman
,
K.
,
2014
, “
Numerical Simulation of Natural Convection and Mixed Convection of the Nanofluid in a Square Cavity Using Buongiorno Model
,”
Powder Technol.
,
268
, pp.
279
292
.10.1016/j.powtec.2014.08.006
41.
Garoosi
,
F.
,
Jahanshaloo
,
L.
, and
Garoosi
,
S.
,
2015
, “
Numerical Simulation of Mixed Convection of the Nanofluid in Heat Exchangers Using a Buongiorno Model
,”
Powder Technol.
,
269
, pp.
296
311
.10.1016/j.powtec.2014.09.009
42.
Alsabery
,
A. I.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2019
, “
Effects of Two-Phase Nanofluid Model on MHD Mixed Convection in a Lid-Driven Cavity in the Presence of Conductive Inner Block and Corner Heater
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
729
750
.10.1007/s10973-018-7377-6
43.
Astanina
,
M. S.
,
Abu-Nada
,
E.
, and
Sheremet
,
M. A.
,
2018
, “
Combined Effects of Thermophoresis, Brownian Motion, and Nanofluid Variable Properties on CuO-Water Nanofluid Natural Convection in a Partially Heated Square Cavity
,”
ASME J. Heat Transfer
,
140
(
8
), p.
082401
.10.1115/1.4039217
44.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.10.1063/1.2093936
45.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.10.1016/j.enconman.2010.06.072
46.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
47.
Patel
,
H. E.
,
Sundararajan
,
T.
,
Pradeep
,
T.
,
Dasgupta
,
A.
,
Dasgupta
,
N.
, and
Das
,
S. K.
,
2005
, “
A Micro-Convection Model for Thermal Conductivity of Nanofluids
,”
Pramana J. Phys.
,
65
(
5
), p.
863
.10.1007/BF02704086
48.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.10.1063/1.1700493
49.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Soleimani
,
S.
,
2013
, “
Two Phase Simulation of Nanofluid Flow and Heat Transfer Using Heatline Analysis
,”
Int. Commun. Heat Mass Transfer
,
47
, pp.
73
81
.10.1016/j.icheatmasstransfer.2013.07.006
50.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Mixed Convection in a Lid-Driven Square Cavity Filled by a Nanofluid: Buongiorno's Mathematical Model
,”
Appl. Math. Comput.
,
266
, pp.
792
808
.
51.
Quintino
,
A.
,
Ricci
,
E.
, and
Corcione
,
M.
,
2017
, “
Thermophoresis-Induced Oscillatory Natural Convection Flows of Water-Based Nanofluids in Tilted Cavities
,”
Numer. Heat Transfer, Part A
,
71
(
3
), pp.
270
289
.10.1080/10407782.2016.1264775
52.
Haddad
,
Z.
,
Abu-Nada
,
E.
,
Oztop
,
H. F.
, and
Mataoui
,
A.
,
2012
, “
Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement?
,”
Int. J. Therm. Sci.
,
57
, pp.
152
162
.10.1016/j.ijthermalsci.2012.01.016
53.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
54.
Sheikhzadeh
,
G. A.
,
Dastmalchi
,
M.
, and
Khorasanizadeh
,
H.
,
2013
, “
Effects of Nanoparticles Transport Mechanisms on Al2O3–Water Nanofluid Natural Convection in a Square Enclosure
,”
Int. J. Therm. Sci.
,
66
, pp.
51
62
.10.1016/j.ijthermalsci.2012.12.001
55.
Sivasankaran
,
S.
,
Cheong
,
H. T.
,
Bhuvaneswari
,
M.
, and
Ganesan
,
P.
,
2016
, “
Effect of Moving Wall Direction on Mixed Convection in an Inclined Lid-Driven Square Cavity With Sinusoidal Heating
,”
Numer. Heat Transfer, Part A
,
69
(
6
), pp.
630
42
.10.1080/10407782.2015.1069669
56.
Mansour
,
M. A.
,
Chamkha
,
A. J.
,
Mohamed
,
R. A.
,
El-Aziz
,
M. A.
, and
Ahmed
,
S. E.
,
2010
, “
MHD Natural Convection in an Inclined Cavity Filled With a Fluid Saturated Porous Medium With Heat Source in the Solid Phase
,”
Nonlinear Anal-Model.
,
15
(
1
), pp.
55
70
.10.15388/NA.2010.15.1.14364
57.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2016
, “
MHD Mixed Convection and Entropy Generation of Nanofluid Filled Lid Driven Cavity Under the Influence of Inclined Magnetic Fields Imposed to Its Upper and Lower Diagonal Triangular Domains
,”
J. Magn. Magn. Mater.
,
406
, pp.
266
281
.10.1016/j.jmmm.2016.01.039
58.
Hussain
,
S.
,
Ahmad
,
S.
,
Mehmood
,
K.
, and
Sagheer
,
M.
,
2017
, “
Effects of Inclination Angle on Mixed Convective Nanofluid Flow in a Double Lid-Driven Cavity With Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
106
, pp.
847
860
.10.1016/j.ijheatmasstransfer.2016.10.016
59.
Cheong
,
H. T.
,
Siri
,
Z.
, and
Sivasankaran
,
S.
,
2013
, “
Effect of Aspect Ratio on Natural Convection in an Inclined Rectangular Enclosure With Sinusoidal Boundary Condition
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
75
85
.10.1016/j.icheatmasstransfer.2013.04.017
60.
Ben-Nakhi
,
A.
, and
Chamkha
,
A. J.
,
2006
, “
Natural Convection in Inclined Partitioned Enclosures
,”
Heat Mass Transfer
,
42
(
4
), pp.
311
321
.10.1007/s00231-005-0014-5
61.
Alinia
,
M.
,
Ganji
,
D. D.
, and
Gorji-Bandpy
,
M.
,
2011
, “
Numerical Study of Mixed Convection in an Inclined Two Sided Lid Driven Cavity Filled With Nanofluid Using Two-Phase Mixture Model
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1428
1435
.10.1016/j.icheatmasstransfer.2011.08.003
62.
Bejan
,
A.
,
1980
, “
Second Law Analysis in Heat Transfer
,”
Energy
,
5
(
8–9
), pp.
720
732
.10.1016/0360-5442(80)90091-2
63.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2010
, “
Entropy Generation Minimization Versus `Thermal Mixing Due to Natural Convection in Differentially and Discretely Heated Square Cavities
,”
Numer. Heat Transfer, Part A
,
58
(
6
), pp.
475
504
.10.1080/10407782.2010.511982
64.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation Due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
867
872
.10.1016/j.icheatmasstransfer.2010.05.007
65.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
66.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Koca
,
A.
,
2008
, “
Entropy Production Due to Free Convection in Partially Heated Isosceles Triangular Enclosures
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1502
1513
.10.1016/j.applthermaleng.2007.08.013
67.
Shahi
,
M.
,
Mahmoudi
,
A. H.
, and
Talebi
,
F.
,
2010
, “
Numerical Study of Mixed Convective Cooling in a Square Cavity Ventilated and Partially Heated From the Below Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
201
213
.10.1016/j.icheatmasstransfer.2009.10.002
68.
McNab
,
G. S.
, and
Meisen
,
A.
,
1973
, “
Thermophoresis in Liquids
,”
J. Colloid Interface Sci.
,
44
(
2
), pp.
339
346
.10.1016/0021-9797(73)90225-7
69.
Chamkha
,
A. J.
, and
Abu-Nada
,
E.
,
2012
, “
Mixed Convection Flow in Single-and Double-Lid Driven Square Cavities Filled With Water–Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech. B-Fluid
,
36
, pp.
82
96
.10.1016/j.euromechflu.2012.03.005
70.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
71.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
(
1
), pp.
108
118
.10.1016/0021-9991(92)90177-Z
72.
Fletcher
,
C. A.
,
2012
,
Computational Techniques for Fluid Dynamics 2: Specific Techniques for Different Flow Categories
,
Springer Science and Business Media
,
Berlin
.
73.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2010
, “
Mixed Convection Flow in a Lid-Driven Inclined Square Enclosure Filled With a Nanofluid
,”
Eur. J. Mech. B-Fluid
,
29
(
6
), pp.
472
482
.10.1016/j.euromechflu.2010.06.008
74.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.10.1016/j.ijthermalsci.2010.02.013
75.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2014
, “
Natural Convection Heat Transfer Enhancement in a Differentially Heated Parallelogrammic Enclosure Filled With Copper-Water Nanofluid
,”
ASME J. Heat Transfer
,
136
(
8
), p.
082502
.10.1115/1.4027448
You do not currently have access to this content.