Abstract

In this article, the effects of nonuniform magnetic fields on the hydrodynamics and heat transfer from a heated sphere to its surrounding ferrofluid flow have been investigated. Kelvin body forces originate from the nonuniformity of the applied magnetic field and can generate the vortices behind the sphere leading to a considerable change in the velocity and temperature fields. The applied magnetic field disturbs the thermal boundary layer and decreases heat-transfer resistance, leading to a significant enhancement in the heat-transfer coefficient. Variations of the local and average Nusselt number value (Nu), separation angle, recirculation length, and drag coefficient were considered to investigate the effects of magnetic field intensity, Reynolds number, and the relative magnetic permeability of the sphere. In addition, the arrangement of the coils was optimized to provide the highest heat-transfer rate. Moreover, the obtained results indicate that enhancement in Nuavg is much larger than the drag resistance penalty.

References

1.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.10.1002/aic.690180219
2.
Polyanin
,
A. D.
,
Kutepov
,
A.
,
Kazenin
,
D.
, and
Vyazmin
,
A.
,
2001
,
Hydrodynamics, Mass and Heat Transfer in Chemical Engineering
,
CRC Press
, London.
3.
Taneda
,
S.
,
1956
, “
Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
11
(
10
), pp.
1104
1108
.10.1143/JPSJ.11.1104
4.
Nakamura
,
I.
,
1976
, “
Steady Wake Behind a Sphere
,”
Phys. Fluids
,
19
(
1
), pp.
5
8
.10.1063/1.861328
5.
Wu
,
J.-S.
, and
Faeth
,
G.
,
1993
, “
Sphere Wakes in Still Surroundings at Intermediate Reynolds Numbers
,”
AIAA J.
,
31
(
8
), pp.
1448
1455
.10.2514/3.11794
6.
Magarvey
,
R.
, and
Bishop
,
R. L.
,
1961
, “
Transition Ranges for Three-Dimensional Wakes
,”
Can. J. Phys.
,
39
(
10
), pp.
1418
1422
.10.1139/p61-169
7.
Natarajan
,
R.
, and
Acrivos
,
A.
,
1993
, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
,
254
, pp.
323
344
.10.1017/S0022112093002150
8.
Gushchin
,
V.
,
Kostomarov
,
A.
,
Matyushin
,
P.
, and
Pavlyukova
,
E.
,
2002
, “
Direct Numerical Simulation of the Transitional Separated Fluid Flows Around a Sphere and a Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
4–5
), pp.
341
358
.10.1016/S0167-6105(01)00196-9
9.
Tomboulides
,
A. G.
, and
Orszag
,
S. A.
,
2000
, “
Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere
,”
J. Fluid Mech.
,
416
, pp.
45
73
.10.1017/S0022112000008880
10.
Johnson
,
T.
, and
Patel
,
V.
,
1999
, “
Flow Past a Sphere Up to a Reynolds Number of 300
,”
J. Fluid Mech.
,
378
, pp.
19
70
.10.1017/S0022112098003206
11.
Nkurikiyimfura
,
I.
,
Wang
,
Y.
, and
Pan
,
Z.
,
2013
, “
Heat Transfer Enhancement by Magnetic Nanofluids—A Review
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
548
561
.10.1016/j.rser.2012.12.039
12.
Bahiraei
,
M.
, and
Hangi
,
M.
,
2015
, “
Flow and Heat Transfer Characteristics of Magnetic Nanofluids: A Review
,”
J. Magn. Magn. Mater.
,
374
, pp.
125
138
.10.1016/j.jmmm.2014.08.004
13.
Abbasi
,
Z.
,
Dehkordi
,
A. M.
, and
Abbasi
,
F.
,
2017
, “
Numerical Investigation of Effects of Uniform Magnetic Field on Heat Transfer Around a Sphere
,”
Int. J. Heat Mass Transfer
,
114
, pp.
703
714
.10.1016/j.ijheatmasstransfer.2017.06.087
14.
Fadaei
,
F.
,
Shahrokhi
,
M.
,
Dehkordi
,
A. M.
, and
Abbasi
,
Z.
,
2019
, “
Forced-Convection Heat Transfer of Ferrofluids in a Circular Duct Partially Filled With Porous Medium in the Presence of Magnetic Field
,”
J. Magn. Magn. Mater.
,
475
, pp.
304
315
.10.1016/j.jmmm.2018.11.032
15.
Schouveiler
,
L.
,
Brydon
,
A.
,
Leweke
,
T.
, and
Thompson
,
M. C.
,
2004
, “
Interactions of the Wakes of Two Spheres Placed Side by Side
,”
Eur. J. Mech. B
,
23
(
1
), pp.
137
145
.10.1016/j.euromechflu.2003.05.004
16.
Jang
,
Y. I.
, and
Lee
,
S. J.
,
2008
, “
PIV Analysis of Near-Wake Behind a Sphere at a Subcritical Reynolds Number
,”
Exp. Fluids
,
44
(
6
), pp.
905
914
.10.1007/s00348-007-0448-2
17.
Rosensweig
,
R. E.
,
1985
,
Ferrohydrodynamic
,
Cambridge University
, Cambridge, UK.
18.
Rosensweig
,
R. E.
,
2004
, “
Continuum Equations for Magnetic and Dielectric Fluids With Internal Rotations
,”
J. Chem. Phys.
,
121
(
3
), pp.
1228
1242
.10.1063/1.1755660
19.
Yamaguchi
,
H.
,
2008
,
Engineering Fluid Mechanics
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
20.
Dhole
,
S.
,
Chhabra
,
R.
, and
Eswaran
,
V.
,
2006
, “
A Numerical Study on the Forced Convection Heat Transfer From an Isothermal and Isoflux Sphere in the Steady Symmetric Flow Regime
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
984
994
.10.1016/j.ijheatmasstransfer.2005.09.010
21.
Ivanov
,
A. O.
,
Kantorovich
,
S. S.
,
Reznikov
,
E. N.
,
Holm
,
C.
,
Pshenichnikov
,
A. F.
,
Lebedev
,
A. V.
,
Chremos
,
A.
, and
Camp
,
P. J.
,
2007
, “
Magnetic Properties of Polydisperse Ferrofluids: A Critical Comparison Between Experiment, Theory, and Computer Simulation
,”
Phys. Rev. E
,
75
(
6
), p.
061405
.10.1103/PhysRevE.75.061405
22.
Klokkenburg
,
M.
,
Erné
,
B.
,
Mendelev
,
V.
, and
Ivanov
,
A.
,
2008
, “
Magnetization Behavior of Ferrofluids With Cryogenically Imaged Dipolar Chains
,”
J. Phys.: Condens. Matter
,
20
(
20
), p.
204113
.10.1088/0953-8984/20/20/204113
23.
Labinac
,
V.
,
Erceg
,
N.
, and
Kotnik-Karuza
,
D.
,
2006
, “
Magnetic Field of a Cylindrical Coil
,”
Am. J. Phys.
,
74
(
7
), pp.
621
627
.10.1119/1.2198885
24.
Plonus
,
M. A.
,
1978
,
Applied Electromagnetics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.