Natural convection during solidification of liquids is known to impact the freezing characteristics and also lead to defect formation. In this study, we report the findings of real-time interferometric observation of bottom-cooled solidification of pure water in a cubical cavity. The results show first quantitative evidence of full-field thermal history during solidification, clearly depicting the anomalous expansion of water below 4 °C. Furthermore, based on the strength of natural convection, characterized by the Rayleigh number, we identify and report four distinct regimes of solidification, namely—conduction dominated, early convection, front instability, and sustained convection. A critical Rayleigh number that initiates instability in the solidifying front has been proposed, which is significantly different from conventional calculations of Rayleigh number relating to the initiation of flow. The study shows full-field quantitative evidence of a well-known phenomenon and provides a further understanding of flow driven nonhomogeneities in the solidifying interfaces.

References

1.
Ehrhard
,
P.
,
Riley
,
D. S.
, and
Steen
,
P. H.
,
2001
,
Interactive Dynamics of Convection and Solidification
, Springer, Dordrecht, The Netherlands.
2.
Ghenai
,
C.
,
Mudunuri
,
A.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
2003
, “
Double-Diffusive Convection During Solidification of a Metal Analog System (NH4Cl–H2O) in a Differentially Heated Cavity
,”
Exp. Therm. Fluid Sci.
,
28
(
1
), pp.
23
35
.
3.
Wang
,
S. Y.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
1999
, “
Vortex Flow of Low Concentration NH4Cl–H2O Solution During the Solidification Process
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4153
4163
.
4.
Srivastava
,
A.
,
Muralidhar
,
K.
, and
Panigrahi
,
P. K.
,
2004
, “
Comparison of Interferometry, Schlieren and Shadowgraph for Visualizing Convection Around a KDP Crystal
,”
J. Cryst. Growth
,
267
(
1–2
), pp.
348
361
.
5.
Kehtarnavaz
,
H.
, and
Bayazitoglu
,
Y.
,
2017
, “
Solidification of Binary Mixture in a Finite Planar Medium: Saline Water
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
964
966
.
6.
Hahn
,
D. W.
, and
Ozisik
,
M. N.
,
2012
, “
Phase-Change Problems
,”
Heat Conduction
,
Wiley
, Hoboken, NJ, pp.
452
495
.
7.
Tanaka
,
H.
,
1998
, “
Simple Physical Explanation of the Unusual Thermodynamic Behavior of Liquid Water
,”
Phys. Rev. Lett.
,
80
, pp.
5750
5753
.
8.
Lin
,
S.
,
Gao
,
D. Y.
, and
Yu
,
X. C.
,
1990
, “
Thermal Stresses Induced by Water Solidification in a Cylindrical Tube
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
1079
1082
.
9.
Wettlaufer
,
J. S.
,
Worster
,
M. G.
, and
Huppert
,
H. E.
,
1997
, “
Natural Convection During Solidification of an Alloy From Above With Application to the Evolution of Sea Ice
,”
J. Fluid Mech.
,
344
, pp.
291
316
.
10.
Beckermann
,
C.
,
Gu
,
J. P.
, and
Boettinger
,
W. J.
,
2000
, “
Development of a Freckle Predictor Via Rayleigh Number Method for Single-Crystal Nickel-Base Superalloy Castings
,”
Metall. Mater. Trans. A
,
31
(
10
), pp.
2545
2557
.
11.
Ramirez
,
J. C.
, and
Beckermann
,
C.
,
2003
, “
Evaluation of a Rayleigh-Number-Based Freckle Criterion for Pb-Sn Alloys and Ni-Base Superalloys
,”
Metall. Mater. Trans. A
,
34
(
7
), pp.
1525
1536
.
12.
Chakraborty
,
P. R.
, and
Dutta
,
P.
,
2013
, “
Study of Freckles Formation During Directional Solidification Under the Influence of Single-Phase and Multiphase Convection
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021004
.
13.
Weaver
,
J. A.
, and
Viskanta
,
R.
,
1986
, “
Freezing of Water Saturated Porous Media in Rectangular Cavity
,”
Int. Commun. Heat Mass Transfer
,
13
(
3
), pp.
245
252
.
14.
Epstein
,
M.
, and
Cheung
,
F. B.
,
1983
, “
Complex Freezing-Melting Interfaces in Fluid Flow
,”
Annu. Rev. Fluid Mech.
,
15
(
1978
), pp.
293
319
.
15.
Cheng
,
K. C.
,
Inaba
,
H.
, and
Gilpin
,
R. R.
,
1988
, “
Effects of Natural Convection on Ice Formation Around an Isothermally Cooled Horizontal Cylinder
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
931
937
.
16.
Bathelt
,
A. G.
, and
Viskanta
,
R.
,
1981
, “
Heat Transfer and Interface Motion During Melting and Solidification Around a Finned Heat Source/Sink
,”
ASME J. Heat Transfer
,
103
(
4
), pp.
720
726
.
17.
Ezan
,
M. A.
,
Erek
,
A.
, and
Dincer
,
I.
,
2011
, “
A Study on the Importance of Natural Convection During Solidification in Rectangular Geometry
,”
ASME J. Heat Transfer
,
133
(
10
), p.
102301
.
18.
Karagadde
,
S.
,
Yuan
,
L.
,
Shevchenko
,
N.
,
Eckert
,
S.
, and
Lee
,
P. D.
,
2014
, “
3-D Microstructural Model of Freckle Formation Validated Using In Situ Experiments
,”
Acta Mater.
,
79
, pp.
168
180
.
19.
Boger
,
D. V.
, and
Westwater
,
J. W.
,
1967
, “
Effect of Buoyancy on the Melting and Freezing Process
,”
ASME J. Heat Transfer
,
89
(
1
), pp.
81
89
.
20.
Gilpin
,
R. R.
,
1976
, “
The Influence of Natural Convection on Dendritic Ice Growth
,”
J. Cryst. Growth
,
36
(
1
), pp.
101
108
.
21.
Merker
,
G. P.
,
Waas
,
P.
, and
Grigull
,
U.
,
1979
, “
Onset of Convection in a Horizontal Water Layer With Maximum Density Effects
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
505
515
.
22.
Tanaka
,
H.
, and
Miyata
,
H.
,
1980
, “
Turbulent Natural Convection in a Horizontal Water Layer Heated From Below
,”
Int. J. Heat Mass Transfer
,
23
(
9
), pp.
1273
1281
.
23.
Osorio
,
A.
,
Avila
,
R.
, and
Cervantes
,
J.
,
2004
, “
On the Natural Convection of Water Near Its Density Inversion in an Inclined Square Cavity
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4491
4495
.
24.
Braga
,
S. L.
, and
Viskanta
,
R.
,
1992
, “
Transient Natural Convection of Water Near Its Density Extremum in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
861
875
.
25.
Gau
,
C.
, and
Viskanta
,
R.
,
1983
, “
Flow Visualization During Solid-Liquid Phase Change Heat Transfer—I: Freezing in a Rectangular Cavity
,”
Int. Commun. Heat Mass Transfer
,
10
(
3
), pp.
173
181
.
26.
Ezan
,
M. A.
, and
Kalfa
,
M.
,
2016
, “
Numerical Investigation of Transient Natural Convection Heat Transfer of Freezing Water in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
61
(
Pt. B
), pp.
438
448
.
27.
Ecker
,
A.
,
1988
, “
Two-Wavelength Holographic Measurement of Temperature and Concentration During Alloy Solidification
,”
J. Thermophys.
,
2
(
3
), pp.
193
196
.
28.
McCay
,
M. H.
, and
McCay
,
T. D.
,
1988
, “
Experimental Measurements of Solutal Layers in Unidirectional Solidification
,”
J. Thermophys.
,
2
(
3
), pp.
197
202
.
29.
Weiss
,
C.
,
Bergeon
,
N.
,
Mangelinck-Noël
,
N.
, and
Billia
,
B.
,
2006
, “
Effects of the Interface Curvature and Dendrite Orientation in Directional Solidification of Bulk Transparent Alloys
,”
Mater. Sci. Forum
,
508
, pp.
337
342
.
30.
Yabuki
,
T.
,
Hamaguchi
,
T.
, and
Nakabeppu
,
O.
,
2012
, “
Interferometric Measurement of the Liquid-Phase Temperature Field Around an Isolated Boiling Bubble
,”
J. Therm. Sci. Technol.
,
7
(
3
), pp.
463
474
.
31.
Srivastava
,
A.
,
Muralidhar
,
K.
, and
Panigrahi
,
P. K.
,
2012
, “
Optical Imaging and Three Dimensional Reconstruction of the Concentration Field Around a Crystal Growing From an Aqueous Solution: A Review
,”
Prog. Cryst. Growth Charact. Mater.
,
58
(
4
), pp.
209
278
.
32.
Varma
,
S. S.
, and
Srivastava
,
A.
,
2016
, “
Real-Time Two-Color Interferometric Technique for Simultaneous Measurements of Temperature and Solutal Fields
,”
Int. J. Heat Mass Transfer
,
98
, pp.
662
674
.
33.
Varma
,
S. S.
,
Rao
,
S. S.
, and
Srivastava
,
A.
,
2017
, “
Simultaneous Measurement of Thermal and Solutal Diffusivities of Salt-Water Solutions From a Single-Shot Dual Wavelength Interferometric Image
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
123
135
.
34.
Tsushima
,
N.
,
Narumi
,
A.
,
Nakane
,
I.
,
Kashiwagi
,
T.
, and
Akisawa
,
A.
,
2005
, “
Visualization of Transient Solidification Process of Aqueous Solution by Dual Wavelength Holographic Interferometry
,”
ASME J. Heat Transfer
,
127
(
8
), p.
801
.
35.
Spatz
,
T. L.
, and
Poulikakos
,
D.
,
1992
, “
A Two-Wavelength Holographic Interferometry Study on the Solidification of a Binary Alloy Around a Horizontal Pipe
,”
ASME J. Heat Transfer
,
114
(
4
), p.
998
.
36.
El-Wakil
,
M. M.
,
Myers
,
G. E.
, and
Schilling
,
R. J.
,
1966
, “
An Interferometric Study of Mass Transfer From a Vertical Plate at Low Reynolds Numbers
,”
ASME J. Heat Transfer
,
88
(
4
), pp.
399
406
.
37.
Tankin
,
R. S.
, and
Farhadieh
,
R.
,
1971
, “
Effects of Thermal Convection Currents on Formation of Ice
,”
Int. J. Heat Mass Transfer
,
14
(
7
), pp.
953
961
.
38.
Farhadieh
,
R.
, and
Tankin
,
R. S.
,
1972
, “
Interferometric Study of Freezing of Sea Water
,”
J. Geophys. Res.
,
77
(
9
), pp.
1647
1656
.
39.
Vikas
,
D.
,
Basu
,
S.
, and
Dutta
,
P.
,
2012
, “
In-Situ Measurements of Concentration and Temperature During Transient Solidification of Aqueous Solution of Ammonium Chloride Using Laser Interferometry
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
2022
2034
.
40.
Goldstein
,
R. J.
,
1996
,
Fluid Mechanics Measurements
,
Taylor and Francis
, Philadelphia, PA.
41.
Mishra
,
D.
,
Muralidhar
,
K.
, and
Munshi
,
P.
,
1998
, “
Performance Evaluation of Fringe Thinning Algorithms for Interferometric Tomography
,”
Opt. Lasers Eng.
,
30
(
3–4
), pp.
229
249
.
42.
Abbate
,
G.
,
Bernini
,
U.
,
Ragozzino
,
E.
, and
Somma
,
F.
,
1978
, “
The Temperature Dependence of the Refractive Index of Water
,”
J. Phys. D
,
11
(
8
), pp.
1167
1172
.
43.
Mishra
,
D.
,
Muralidhar
,
K.
, and
Munshi
,
P.
,
2013
, “
Measurements of Three Dimensional Temperature Field in Fluids Using Laser Interferometry
,”
Def. Sci. J.
,
49
(
3
), pp.
243
255
.
44.
Rao
,
S. S.
, and
Srivastava
,
A.
,
2016
, “
Interferometric Study of Natural Convection in a Differentially-Heated Cavity With Al2O3-Water Based Dilute Nanofluids
,”
Int. J. Heat Mass Transfer
,
92
, pp.
1128
1142
.
45.
Slack
,
G. A.
,
1980
, “
Thermal Conductivity of Ice
,”
Phys. Rev. B
,
22
(
6
), pp.
3065
3071
.
46.
Dantzig
,
J. A.
, and
Rappaz
,
M.
,
2009
, “
Analytical Solutions for Solidification
,”
Solidification
,
EPFL Press
, Lausanne, Switzerland, pp.
165
170
.
47.
Seybert
,
C. D.
, and
Evans
,
J. W.
,
2005
, “
PIV Measurements of Velocity of Water in the Presence of Ice and Comparison With Calculated Values
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
67
73
.
48.
James
,
D. W.
,
1968
, “
The Thermal Diffusivity of Ice and Water Between −40 and +60 °C
,”
J. Mater. Sci.
,
3
(
5
), pp.
540
543
.
You do not currently have access to this content.