Ultrafast cooling is the key to successful cell vitrification cryopreservation of lower concentration cryoprotective solution. This research develops a cell cryopreservation methodology which utilizes thin film evaporation and achieves vitrification of relatively low concentration cryoprotectant with an ultrafast cooling rate. Experimental results show that the average cooling rate of dimethylsulfoxide (DMSO) cryoprotective solution reaches 150,000 °C/min in a temperature range from 10 °C to −180 °C. The ultrafast cooling rate can remarkably improve the vitrification tendencies of the cryoprotective solution. This methodology opens the possibility for more successful cell vitrification cryopreservation.
Issue Section:
Heat and Mass Transfer
Keywords:
Bio-Heat and mass transfer,
Evaporation,
Low temperature heat transfer,
Micro heat transfer,
Boiling,
Condensation,
Nanoscale heat transfer
Topics:
Cooling,
Cryonics,
Evaporation,
Nitrogen,
Temperature,
Thin films,
Vitrification,
Pool boiling,
Heat
References
1.
Han
, X.
, Ma
, H. B.
, Jiao
, A.
, and Critser
, J. K.
, 2008
, “Investigations on the Heat Transport Capability of a Cryogenic Oscillating Heat Pipe and Its Application in Achieving Ultra-Fast Cooling Rates for Cell Vitrification Cryopreservation
,” Cryobiology
, 56
(3
), pp. 195
–203
.2.
Martino
, A.
, Songsasen
, N.
, and Leibo
, S. P.
, 1996
, “Development Into Blastocysts of Bovine Occytes Cryopreserved by Ultra-Rapid Cooling
,” Biol. Reprod.
, 54
(5
), pp. 1059
–1069
.https://doi.org/10.1095/biolreprod54.5.10593.
Mukaida
, T.
, Nakamura
, S.
, Tomiyama
, T.
, Wada
, S.
, Kasai
, M.
, and Takahashi
, K.
, 2001
, “Successful Birth After Transfer of Vitrified Human Blastocysts With Use of a Cryoloop Containerless Technique
,” Fertil. Steril.
, 76
(3
), pp. 618
–620
.4.
Steponkus
, P. L.
, Myers
, S. P.
, Bronshteyn
, V.
, Leibo
, S. P.
, Rall
, W. F.
, Pitt
, R. E.
, Lin
, T. T.
, and Maclntyrell
, R. J.
, 1990
, “Cryopreservation of Drosophila Melanogaster Embryos
,” Nature
, 345
(6271
), pp. 170
–172
.5.
Vajta
, G.
, Holm
, P.
, Kuwayama
, M.
, Booth
, P. J.
, Jacobsen
, H.
, Greve
, T.
, and Callesen
, H.
, 1998
, “Open Pulled Straw (OPS) Vitrification: A New Way to Reduce Cryoinjuries of Bovine Ova and Embryos
,” Mol. Reprod. Dev.
, 51
(1
), pp. 53
–58
.6.
Fahy
, G. M.
, Macfarlane
, D. R.
, Angell
, C. A.
, and Meryman
, T. T.
, 1984
, “Vitrification as an Approach to Cryopreservation
,” Cryobiology
, 21
(2
), pp. 407
–426
.7.
Boutron
, P.
, 1986
, “Comparison With the Theory of the Kinetics and Extent of Ice Crystallization and of the Glass-Forming Tendency in Aqueous Cryoprotective Solutions
,” Cryobiology
, 23
(1
), pp. 88
–102
.8.
Steponkus
, P. L.
, and Caldwell
, S.
, 1993
, “An Optimized Procedure for the Cryopreservation of Drosophila Melanogaster Embryos
,” CryoLetters
, 14
(6
), pp. 377
–382
.http://www.cryoletters.org/index.htm9.
Yoon
, T. K.
, Lee
, D. R.
, Cha
, S. K.
, Chung
, H. M.
, Lee
, W. S.
, and Cha
, K. Y.
, 2007
, “Survival Rate of Human Oocytes and Pregnancy Outcome After Vitrification Using Slush Nitrogen in Assisted Reproductive Technologies
,” Fert. Steril.
, 88
(4
), pp. 952
–956
.10.
Bau
, H. H.
, and Torrance
, K. E.
, 1982
, “Boiling in Low-Permeability Porous Materials
,” Int. J. Heat Mass Transfer
, 25
(1
), pp. 45
–55
.11.
Demsky
, S.
, and Ma
, H. B.
, 2004
, “Thin Film Evaporation on a Curved Surface
,” Microscale Therm. Eng.
, 8
(3
), pp. 285
–299
.12.
Kaviany
, M.
, 1995
, Principles of Heat Transfer in Porous Media
, Springer-Verlag
, New York
.13.
Ma
, H. B.
, Cheng
, P.
, and Borgmeyer
, B.
, 2008
, “Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,” Microfluid. Nanofluid.
, 4
(3
), pp. 237
–243
.14.
Sait
, H.
, and Ma
, H. B.
, 2009
, “An Experimental Investigation of Thin Film Evaporation
,” Nanoscale Microscale Thermophys. Eng.
, 13
(4
), pp. 218
–227
.Copyright © 2018 by ASME
You do not currently have access to this content.