Considering mass transfer and energy transfer between liquid phase and vapor phase, a mixture model for boiling heat transfer of nanofluid is established. In addition, an experimental installation of boiling heat transfer is built. The boiling heat transfer of TiO2–water nanofluid is investigated by numerical and experimental methods, respectively. Thermal conductivity, viscosity, and boiling bubble size of TiO2–water nanofluid are experimentally investigated, and the effects of different nanoparticle mass fractions, bubble sizes and superheat on boiling heat transfer are also discussed. It is found that the boiling bubble size in TiO2–water nanofluid is only one-third of that in de-ionized water. It is also found that there is a critical nanoparticle mass fraction (wt.% = 2%) between enhancement and degradation for TiO2–water nanofluid. Compared with water, nanofluid enhances the boiling heat transfer coefficient by 77.7% when the nanoparticle mass fraction is lower than 2%, while it reduces the boiling heat transfer by 30.3% when the nanoparticle mass fraction is higher than 2%. The boiling heat transfer coefficients increase with the superheat for water and nanofluid. A mathematic correlation between heat flux and superheat is obtained in this paper.

References

1.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
2.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.
3.
Sanna
,
A.
,
Hutter
,
C.
,
Kenning
,
D. B. R.
,
Karayiannis
,
T. G.
,
Sefiane
,
K.
, and
Nelson
,
R. A.
,
2014
, “
Numerical Investigation of Nucleate Boiling Heat Transfer on Thin Substrates
,”
Int. J. Heat Mass Transfer
,
76
, pp.
45
64
.
4.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.
5.
Kim
,
T. Y.
, and
Garimella
,
S. V.
,
2014
, “
Investigation of Boiling Heat Transfer in Water Using a Free-Particles-Based Enhancement Technique
,”
Int. J. Heat Mass Transfer
,
71
, pp.
818
828
.
6.
Ali
,
R.
,
Palm
,
B.
, and
Maqbool
,
M. H.
,
2011
, “
Flow Boiling Heat Transfer Characteristics of a Minichannel Up to Dryout Condition
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081501
.
7.
Utaka
,
Y.
,
Kashiwabara
,
Y.
,
Ozaki
,
M.
, and
Chen
,
Z.
,
2014
, “
Heat Transfer Characteristics Based on Microlayer Structure in Nucleate Pool Boiling for Water and Ethanol
,”
Int. J. Heat Mass Transfer
,
68
, pp.
479
488
.
8.
Mohammadpourfard
,
M.
,
Aminfar
,
H.
, and
Sahraro
,
M.
,
2014
, “
Numerical Simulation of Nucleate Pool Boiling on the Horizontal Surface for Ferrofluid Under the Effect of Non-Uniform Magnetic Field
,”
Heat Mass Transfer
,
50
(
8
), pp.
1167
1176
.
9.
Penley
,
S. J.
, and
Wirtz
,
R. A.
,
2011
, “
Correlation of Subatmospheric Pressure, Saturated, Pool Boiling of Water on a Structured-Porous Surface
,”
ASME J. Heat Transfer
,
133
(
4
), p.
041501
.
10.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
11.
Qi
,
C.
,
Liang
,
L.
, and
Rao
,
Z.
,
2016
, “
Study on the Flow and Heat Transfer of Liquid Metal Base Nanofluid With Different Nanoparticle Radiuses Based on Two-Phase Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
94
, pp.
316
326
.
12.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
13.
Liu
,
Z.
,
Xiong
,
J.
, and
Bao
,
R.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
,
33
(
12
), pp.
1284
1295
.
14.
Shi
,
M. H.
,
Shuai
,
M. Q.
,
Chen
,
Z. Q.
,
Li
,
Q.
, and
Xuan
,
Y. M.
,
2007
, “
Study on Pool Boiling Heat Transfer of Nano-Particle Suspensions on Plate Surface
,”
J. Enhanced Heat Transfer
,
14
(
3
), pp.
223
231
.
15.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2
), pp.
265
274
.
16.
Qi
,
C.
,
He
,
Y.
,
Hu
,
Y.
,
Jiang
,
B.
,
Luan
,
T.
, and
Ding
,
Y.
,
2013
, “
Experimental Study on Boiling Heat Transfer of α-Al2O3-Water Nanofluid
,”
Nanosci. Nanotechnol. Lett.
,
5
(
8
), pp.
895
901
.
17.
Truong
,
B. H.
,
2007
, “
Determination of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,”
ASME
Paper No. IMECE2007-41697.
18.
Ahn
,
H. S.
,
Sathyamurthi
,
V.
, and
Banerjee
,
D.
,
2009
, “
Pool Boiling Experiments on a Nanostructured Surface
,”
IEEE Compon. Pack Technol.
,
32
(
1
), pp.
156
165
.
19.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.
20.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
,
2008
, “
Pool Boiling Heat Transfer Characteristics of ZrO2-Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
,
44
(
8
), pp.
999
1004
.
21.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
,
Chandra
,
R.
, and
Jain
,
P. K.
,
2009
, “
Pool Boiling Characteristics of Carbon Nanotube Based Nanofluids Over a Horizontal Tube
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
022001
.
22.
Soltani
,
S.
,
Etemad
,
S. G.
, and
Thibault
,
J.
,
2009
, “
Pool Boiling Heat Transfer Performance of Newtonian Nanofluids
,”
Heat Mass Transfer
,
45
(
12
), pp.
1555
1560
.
23.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
24.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2420
2428
.
25.
Das
,
S.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.
26.
Jackson
,
J. E.
,
2007
, “
Investigation Into the Pool-Boiling Characteristics of Gold Nanofluids
,”
Ph.D. thesis
, University of Missouri-Columbia, Columbia, MO.
27.
Milanova
,
D.
, and
Kumar
,
R.
,
2005
, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
,
87
(
23
), pp.
185
194
.
28.
Zhou
,
D. W.
,
2004
, “
Heat Transfer Enhancement of Copper Nanofluid With Acoustic Cavitation
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3109
3117
.
29.
Sajith
,
V.
,
Madhusoodanan
,
R. M.
, and
Sobhan
,
C. B.
,
2008
, “
An Experimental Investigation of the Boiling Performance of Water-Based Nanofluids
,”
ASME
Paper No. MNHT2008-52216.
30.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2009
, “
Nucleate Pool Boiling Heat Transfer of TiO2-R141b Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1582
1588
.
31.
Kim
,
J. H.
,
Kim
,
K. H.
, and
You
,
S. M.
,
2004
, “
Pool Boiling Heat Transfer in Saturated Nanofluids
,”
ASME
Paper No. IMECE2004-61108.
32.
Vassallo
,
P.
,
Kumar
,
R.
, and
Amico
,
S. D.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
407
411
.
33.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.
34.
Rohsenow
,
W. M.
,
1951
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Technical Report No. 5
, pp.
1
15
.
35.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
You do not currently have access to this content.