The effects of anisotropic slip and thermal jump on the three-dimensional stagnation point flow of nanofluid containing microorganisms from a moving surface have been investigated numerically. Anisotropic slip takes place on geometrically striated surfaces and superhydrophobic strips. Zero mass flux of nanoparticles at the surface is applied to achieve practically applicable results. Using appropriate similarity transformations, the transport equations are reduced to a system of nonlinear ordinary differential equations with coupled boundary conditions. Numerical solutions are reported by means of very efficient numerical method provided by the symbolic code Maple. The influences of the emerging parameters on the dimensionless velocity, temperature, nanoparticle volumetric fraction, density of motile microorganism profiles, as well as the local skin friction coefficient, the local Nusselt number, and the local density of the motile microorganisms are displayed graphically and illustrated in detail. The computations demonstrate that the skin friction along the x-axis is enhanced with the velocity slip parameter along the y-axis. The converse response is observed for the dimensionless skin friction along the y-axis. The heat transfer rate is increased with greater velocity slip effects but depressed with the thermal slip parameter. The local Nusselt number is increased with Prandtl number and decreased with the thermophoresis parameter. The local density for motile microorganisms is enhanced with velocity slip parameters and depressed with the bioconvection Lewis number, thermophoresis, and Péclet number. Numerical results are validated where possible with published results and excellent correlation is achieved.

References

1.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
, 8th ed.,
McGraw-Hill
,
New York
.
2.
Malvandi
,
A.
,
Hedayati
,
F.
, and
Ganji
,
D. D.
,
2014
, “
Slip Effects on Unsteady Stagnation Point Flow of a Nanofluid Over a Stretching Sheet
,”
Powder Technol.
,
253
, pp.
377
384
.
3.
Hiemenz
,
K.
,
1911
, “
Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchtengraden Kreiszylinder
,”
Dinglers Polytech. J.
,
326
, pp.
321
324
.
4.
Hamad
,
M. A. A.
,
Uddin
,
M. J.
, and
Ismail
,
A. I. M.
,
2012
, “
Radiation Effects on Heat and Mass Transfer in MHD Stagnation-Point Flow Over a Permeable Flat Plate With Thermal Convective Surface Boundary Condition, Temperature Dependent Viscosity and Thermal Conductivity
,”
Nucl. Eng. Des.
,
242
, pp.
194
200
.
5.
Chander
,
S.
, and
Ray
,
A.
,
2008
, “
An Experimental and Numerical Study of Stagnation Point Heat Transfer for Methane/Air Laminar Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3595
3607
.
6.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.
7.
Wang
,
C. Y.
,
2003
, “
Stagnation Flows With Slip: Exact Solutions of the Navier-Stokes Equations
,”
Z. Angew. Math. Mech. Phys.
,
54
(
1
), pp.
184
189
.
8.
Wang
,
C. Y.
,
2003
, “
Stagnation Flow on a Plate With Anisotropic Slip
,”
Eur. J. Mech., B: Fluids
,
38
, pp.
73
77
.
9.
Uddin
,
M. J.
,
Bég
,
O. A.
, and
Ismail
,
A. I. M.
,
2015
, “
Radiative Convective Nanofluid Flow Past a Stretching/Shrinking Sheet With Slip Boundary Conditions
,”
AIAA J. Thermophys. Heat Transfer
,
29
(
3
), pp.
513
523
.
10.
Bergles
,
A. E.
,
1988
, “
Heat Transfer Augmentation
,”
Two-Phase Flow Heat Exchangers
,
S.
Kakaç
,
A.
Bergles
, and
E. O.
Fernandes
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
343
373
.
11.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticle
,”
Development and Applications of Non-Newtonian Flows
, FED-Vol.
231
/MD-Vol. 66,
ASME
,
New York
, pp.
99
105
.
12.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
13.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
.
14.
Platt
,
J. R.
,
1961
, “
Bioconvection Patterns' in Cultures of Free-Swimming Organisms
,”
Science
,
133
(
3466
), pp.
1766
1767
.
15.
Tsai
,
T.-H.
,
Liou
,
D.-S.
,
Kuo
,
L.-S.
, and
Chen
,
P.-H.
,
2009
, “
Rapid Mixing Between Ferro-Nanofluid and Water in a Semiactive Y-Type Micromixer
,”
Sens. Actuators, A
,
153
(
2
), pp.
267
273
.
16.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1421
1425
.
17.
MacDevette
,
M. M.
,
Myers
,
T. G.
, and
Wetton
,
B.
,
2014
, “
Boundary Layer Analysis and Heat Transfer of a Nanofluid
,”
Microfluid. Nanofluid.
,
17
(
2
), pp.
401
412
.
18.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bio-Thermal Convection: Simultaneous Effects of Gyrotactic and Oxytactic Micro-Organisms
,”
Fluid Dyn. Res.
,
43
(
5
), p.
055505
.
19.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bioconvection in Water-Based Suspensions Containing Nanoparticles and Oxytactic Microorganisms: Oscillatory Instability
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
100
.
20.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection in a Horizontal Fluid-Saturated Porous Layer
,”
J. Porous Media
,
15
(
1
), pp.
11
27
.
21.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection in Porous Media: Oxytactic Microorganisms
,”
J. Porous Media
,
15
(
3
), pp.
233
248
.
22.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection: Interaction of Microorganisms Oxytactic Upswimming, Nanoparticle Distribution, and Heating/Cooling From Below
,”
Theor. Comput. Fluid Dyn.
,
26
(
1
), pp.
291
310
.
23.
Bég
,
O. A.
,
Uddin
,
M. J.
, and
Khan
,
W. A.
,
2015
, “
Bioconvective Non-Newtonian Nanofluid Transport in Porous Media Containing Micro-Organisms in a Moving Free Stream
,”
J. Mech. Med. Biol.
,
15
(05), p.
1550071
.
24.
Xu
,
H.
, and
Pop
,
I.
,
2014
, “
Fully Developed Mixed Convection Flow in a Horizontal Channel Filled by a Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Eur. J. Mech., B: Fluids
,
46
, pp.
37
45
.
25.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2013
, “
The Cheng-Minkowycz Problem for Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid: A Revised Model
,”
Int. J. Heat Mass Transfer
,
65
, pp.
682
685
.
26.
Yuan
,
Y.
,
Ahmed
,
J.
,
Zhou
,
L.
,
Zhao
,
B.
, and
Kim
,
S.
,
2011
, “
Carbon Nanoparticles-Assisted Mediator-Less Microbial Fuel Cells Using Proteus Vulgaris
,”
Biosens. Bioelectron.
,
27
(
1
), pp.
106
112
.
You do not currently have access to this content.