Convective heat transfer of a thermally developing rarefied gas flow in a microtube with boundary shear work, viscous dissipation, and axial conduction is analyzed numerically for both constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Analytical solutions for the fully developed flow conditions including the boundary shear work are also derived. The proper thermal boundary condition considering the sliding friction at the wall for the CHF case is implemented. The sliding friction is also included in the calculation of the wall heat flux for the CWT case. A comparative study is performed to quantify the effect of the shear work on heat transfer in the entrance—and the fully developed—regions for both gas cooling and heating. Results are presented in both graphical and tabular forms for a range of problem parameters. The results show that the effect of shear work on heat transfer is considerable and it increases with increasing both the Knudsen number and Brinkman number. Neglecting the shear work in a microtube slip flow leads to over- or underestimating the Nusselt number considerably. In particular, for the CWT case with fully developed conditions, the contribution of the shear work to heat transfer can be around 45% in the vicinity of the upper limit of the slip flow regime, regardless of how small the nonzero Brinkman number can be.

References

1.
Maslen
,
H. S.
,
1958
, “
On Heat Transfer in Slip Flow
,”
J. Aeronaut. Sci.
,
25
(
6
), pp.
400
401
.
2.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
ASME J. Heat Transfer
,
84
(
4
), pp.
363
369
.
3.
Inman
,
R. M.
,
1964
, “
Laminar Slip Flow Heat Transfer in a Parallel Plate Channel or Round Tube With Uniform Wall Heating
,” NASA Technical Note No. D-2393.
4.
Hong
,
C.
, and
Asako
,
Y.
,
2010
, “
Some Considerations on Thermal Boundary Condition of Slip Flow
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3075
3079
.
5.
Hadjiconstantinou
,
N. G.
,
2003
, “
Dissipation in Small Scale Gaseous Flows
,”
ASME Trans. ASME J. Heat Transfer
,
125
(
5
), pp.
944
947
.
6.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020908
.
7.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
,
2001
, “
Heat Transfer in Microtubes With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2395
2403
.
8.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
,
2002
, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
2395
2403
.
9.
Myong
,
R. S.
,
Lockerby
,
D. A.
, and
Reese
,
J. M.
,
2006
, “
The Effect of Gaseous Slip on Microscale Heat Transfer: An Extended Graetz Problem
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2502
2513
.
10.
Chen
,
C.-H.
,
2006
, “
Slip-Flow Heat Transfer in a Microchannel With Viscous Dissipation
,”
Heat Mass Transfer
,
42
(
9
), pp.
853
860
.
11.
Jeong
,
H.-E.
, and
Jeong
,
J.-T.
,
2006
, “
Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube
,”
Int. J. Mech. Sci. Technol.
,
20
(
1
), pp.
158
188
.
12.
Jeong
,
H.-E.
, and
Jeong
,
J.-T.
,
2006
, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2151
2157
.
13.
Cetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakac
,
S.
,
2009
, “
Slip-Flow Heat Transfer in Microtubes With Axial Conduction and Viscous Dissipation—An Extended Graetz Problem
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1673
1678
.
14.
Xiao
,
N.
,
Elsnab
,
J.
, and
Ameel
,
T.
,
2009
, “
Microtube Gas Flows With Second-Order Slip Flow and Temperature Jump Boundary Conditions
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
243
251
.
15.
Satapathy
,
A. K.
,
2010
, “
Slip Flow Heat Transfer in an Infinite Microtube With Axial Conduction
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
153
160
.
16.
Zhu
,
X.
, and
Liao
,
Q.
,
2006
, “
Heat Transfer for Laminar Slip Flow in a Microchannel of Arbitrary Cross Section With Complex Thermal Boundary Conditions
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1246
1256
.
17.
Cetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakac
,
S.
,
2008
, “
Fluid Flow in Microtubes With Axial Conduction Including Rarefaction and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
535
544
.
18.
Aziz
,
A.
, and
Niedbalski
,
N.
,
2011
, “
Thermally Developing Microtube Gas Flow With Axial Conduction and Viscous Dissipation
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
332
340
.
19.
Aydin
,
O.
, and
Avi
,
M.
,
2006
Analysis of Micro-Graetz Problem in a Microtube
,”
Nanoscale Microscale Thermophys. Eng.
,
10
(
4
), pp.
345
358
.
20.
Sun
,
W.
,
Kakac
,
S.
, and
Yazicioglu
,
A. G.
,
2007
, “
A Numerical Study of Single-Phase Convective Heat Transfer in Microtubes for Slip Flow
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1084
1094
.
21.
Rij
,
J. V.
,
Ameel
,
T.
, and
Harmann
,
T.
,
2009
, “
The Effect of Viscous Dissipation and Rarefaction on Rectangular Microchannel Convective Heat Transfer
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
271
281
.
22.
Rij
,
J. V.
,
Harmann
,
T.
, and
Ameel
,
T.
,
2007
, “
The Effect of Creep Flow on Two-Dimensional Isoflux Microchannels
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1095
1103
.
23.
Zade
,
A. Q.
,
Renksizbulut
,
M.
, and,
Friedman
,
J.
,
2011
, “
Heat Transfer Characteristics of Developing Gaseous Slip-Flow in Rectangular Microchannels With Variable Physical Properties
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
117
127
.
24.
Renksizbulut
,
M.
,
Niazman
,
H.
, and
Tercan
,
G.
,
2006
, “
Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
45
(
9
), pp.
870
881
.
25.
Shi
,
W.
,
Miyamoto
,
M.
,
Katoh
,
Y.
, and
Kurima
,
J.
,
2001
, “
Choked Flow of Low Density Gas in a Narrow Parallel-Plate Channel With Adiabatic Walls
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2555
2565
.
26.
Miyamoto
,
M.
,
Shi
,
W.
,
Katoh
,
Y.
, and
Kurima
,
J.
,
2003
, “
Choked Flow and Heat Transfer of Low Density Gas in a Narrow Parallel-Plate Channel With Uniformly Heating Walls
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2685
2693
.
27.
Gad-El-Haq
,
M.
, ed.,
2006
,
The MEMS Handbook
,
Taylor & Francis
,
Boca Raton, FL
.
28.
Nguyen
,
N-T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Boston, MA
.
29.
Schmidt
,
F. W.
, and
Zeldin
,
B.
,
1970
, “
Laminar Heat Transfer in the Entrance Region of Ducts
,”
Appl. Sci. Res.
,
23
(
1
), pp.
73
94
.
30.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Murthy
,
J. Y.
,
2006
,
Handbook of Numerical Heat Transfer
,
Wiley
,
Hoboken, NJ
.
31.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.