This paper investigates the simulation, response surface modeling, and optimization of the metalorganic chemical vapor deposition (MOCVD) process for the deposition of gallium nitride (GaN). Trimethylgallium (TMGa) and ammonia (NH3) are the precursors carried by hydrogen into the rotating-disk reactor. The deposition rate of GaN film and its uniformity form the focus of this study. Computational fluid dynamics (CFD) model simulates the deposition of the GaN film. CFD model is employed to identify two design variables, inlet velocity and inlet precursor concentration ratio, which significantly affect the deposition rate and uniformity of GaN film. Compromise response surface method (CRSM) is used to generate response surfaces for average deposition rate and uniformity. These response surfaces are used to generate the Pareto front for the conflicting objectives of optimal rate of average deposition and uniformity. Pareto front captures the trade-off between deposition rate and uniformity of the GaN film. It is observed that for the whole range of design variables, there are numerous options to get stable uniformity levels than deposition rate. The optimal inlet velocity and precursor concentration for different objective functions considered tend to be near the upper bounds.

References

1.
Ohring
,
M.
,
2001
,
Materials Science of Thin Films
,
Academic Press
,
Waltham, MA
.
2.
Breiland
,
W. G.
, and
Coltrin
,
M. E.
,
1990
, “
Si Deposition Rates in a Two-Dimensional CVD Reactor and Comparisons With Model Calculations
,”
J. Electrochem. Soc.
,
137
(
7
), pp.
2313
2319
.10.1149/1.2086933
3.
Gardeniers
,
J.
,
Maas
,
W.
,
Van Meerten
,
R.
, and
Giling
,
L.
,
1989
, “
Influence of Temperature on the Crystal Habit of Silicon in the Si–H–Cl CVD System I. Experimental Results
,”
J. Cryst. Growth
,
96
(
4
), pp.
821
831
.10.1016/0022-0248(89)90642-8
4.
Amano
,
H.
,
Kito
,
M.
,
Hiramatsu
,
K.
, and
Akasaki
,
I.
,
1989
, “
P-Type Conduction in Mg-Doped GaN Treated With Low-Energy Electron Beam Irradiation (LEEBI)
,”
Jpn. J. Appl. Phys
,
28
(
12
), pp.
L2112
L2114
.10.1143/JJAP.28.L2112
5.
Cheng
,
H.-E.
,
Chiang
,
M.-J.
, and
Hon
,
M.-H.
,
1995
, “
Growth Characteristics and Properties of TiN Coating by Chemical Vapor Deposition
,”
J. Electrochem. Soc.
,
142
(
5
), pp.
1573
1578
.10.1149/1.2048615
6.
Hintermann
,
H.
,
1996
, “
Advances and Development in CVD Technology
,”
Mater. Sci. Eng. A
,
209
(
1
), pp.
366
371
.10.1016/0921-5093(95)10131-4
7.
Gladfelter
,
W. L.
,
1993
, “
Selective Metalization by Chemical Vapor Deposition
,”
Chem. Mater.
,
5
(
10
), pp.
1372
1388
.10.1021/cm00034a004
8.
Creighton
,
J. R.
, and
Parmeter
,
J. E.
,
1993
, “
Metal CVD for Microelectronic Applications: An Examination of Surface Chemistry and Kinetics
,”
Crit. Rev. Solid State Mater. Sci.
,
18
(
2
), pp.
175
237
.10.1080/10408439308242560
9.
Evans
,
G.
, and
Greif
,
R.
,
1987
, “
Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
928
935
.10.1115/1.3248205
10.
Dimitrios
,
I.
,
Kremer
,
A. M.
,
McKenna
,
D. R.
, and
Jensen
,
K. F.
,
1987
, “
Complex Flow Phenomena in Vertical MOCVD Reactors: Effects on Deposition Uniformity and Interface Abruptness
,”
J. Cryst. Growth
,
85
(
1–2
), pp.
154
164
.10.1016/0022-0248(87)90217-X
11.
Fotiadis
,
D. I.
,
Boekholt
,
M.
,
Jensen
,
K. F.
, and
Richter
,
W.
,
1990
, “
Flow and Heat Transfer in CVD Reactors: Comparison of Raman Temperature Measurements and Finite Element Model Predictions
,”
J. Cryst. Growth
,
100
(
3
), pp.
577
599
.10.1016/0022-0248(90)90257-L
12.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Ann. Rev. Fluid Mech.
,
23
(
1
), pp.
197
232
.10.1146/annurev.fl.23.010191.001213
13.
Karki
,
K. C.
,
Sathyamurthy
,
P. S.
, and
Patankar
,
S. V.
,
1993
, “
Laminar Flow Over a Confined Heated Disk: Effect of Buoyancy and Rotation
,” Advanced Computations in Materials Processing, ASME, New York, pp. 73–81.
14.
Moffat
,
H.
, and
Jensen
,
K. F.
,
1986
, “
Complex Flow Phenomena in MOCVD Reactors: I. Horizontal Reactors
,”
J. Cryst. Growth
,
77
(
1
), pp.
108
119
.10.1016/0022-0248(86)90290-3
15.
Ouazzani
,
J.
, and
Rosenberger
,
F.
,
1990
, “
Three-Dimensional Modelling of Horizontal Chemical Vapor Deposition: I. MOCVD at Atmospheric Pressure
,”
J. Cryst. Growth
,
100
(
3
), pp.
545
576
.10.1016/0022-0248(90)90256-K
16.
Karki
,
K.
,
Sathyamurthy
,
P.
, and
Patankar
,
S.
,
1993
, “
Three-Dimensional Mixed Convection in a Horizontal Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
803
806
.10.1115/1.2910760
17.
Visser
,
E.
,
Kleijn
,
C.
,
Govers
,
C.
,
Hoogendoorn
,
C.
, and
Giling
,
L.
,
1989
, “
Return Flows in Horizontal MOCVD Reactors Studied With the Use of TiO2 Particle Injection and Numerical Calculations
,”
J. Cryst. Growth
,
94
(
4
), pp.
929
946
.10.1016/0022-0248(89)90127-9
18.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Heat Transfer
,
28
, pp.
339
425
.10.1016/S0065-2717(08)70143-6
19.
Kee
,
R. J.
,
Ting
,
A.
, and
Spence
,
P. A.
,
1994
, “
Understanding and Improving Materials Processing Through Interpreting and Manipulating Predictive Models
,”
MRS Proceedings
, Vol.
363
,
Cambridge University Press
,
Cambridge, UK
.10.1557/PROC-363-3
20.
Rashidi
,
I.
,
Mahian
,
O.
,
Lorenzini
,
G.
,
Biserni
,
C.
, and
Wongwises
,
S.
,
2014
, “
Natural Convection of Al2O3/Water Nanofluid in a Square Cavity: Effects of Heterogeneous Heating
,”
Int. J. Heat Mass Transfer
,
74
, pp.
391
402
.10.1016/j.ijheatmasstransfer.2014.03.030
21.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Geometric Optimization of T–Y-Shaped Cavity According to Constructal Design
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4683
4688
.10.1016/j.ijheatmasstransfer.2009.06.020
22.
Hajmohammadi
,
M. R.
,
Eskandari
,
H.
,
Saffar-Avval
,
M.
, and
Campo
,
A.
,
2013
, “
A New Configuration of Bend Tubes for Compound Optimization of Heat and Fluid Flow
,”
Energy
,
62
, pp.
418
424
.10.1016/j.energy.2013.09.046
23.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
,
Campo
,
A.
, and
Nourazar
,
S. S.
,
2013
, “
Valuable Reconsideration in the Constructal Design of Cavities
,”
Energy Convers. Manage.
,
66
, pp.
33
40
.10.1016/j.enconman.2012.09.031
24.
Hajmohammadi
,
M.
,
Poozesh
,
S.
,
Salman Nourazar
,
S.
, and
Manesh
,
A.
,
2013
, “
Optimal Architecture of Heat Generating Pieces in a Fin
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
1143
1149
.10.1007/s12206-013-0217-5
25.
Hajmohammadi
,
M.
,
Rahmani
,
M.
,
Campo
,
A.
, and
Shariatzadeh
,
O. J.
,
2014
, “
Optimal Design of Unequal Heat Flux Elements for Optimized Heat Transfer Inside a Rectangular Duct
,”
Energy
,
68
, pp.
609
616
.10.1016/j.energy.2014.02.011
26.
Hajmohammadi
,
M.
,
Abianeh
, V
. A.
,
Moezzinajafabadi
,
M.
, and
Daneshi
,
M.
,
2013
, “
Fork-Shaped Highly Conductive Pathways for Maximum Cooling in a Heat Generating Piece
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
228
235
.10.1016/j.applthermaleng.2013.08.001
27.
Hajmohammadi
,
M.
,
Shariatzadeh
,
O. J.
,
Moulod
,
M.
, and
Nourazar
,
S.
,
2014
, “
Phi and Psi Shaped Conductive Routes for Improved Cooling in a Heat Generating Piece
,”
Int. J. Therm. Sci.
,
77
, pp.
66
74
.10.1016/j.ijthermalsci.2013.10.015
28.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3259
3264
.10.1016/0017-9310(92)90213-C
29.
Southwell
,
R.
,
Mendicino
,
M.
, and
Seebauer
,
E.
,
1996
, “
Optimization of Selective TiSi2 Chemical Vapor Deposition by Mechanistic Chemical Kinetics
,”
J. Vac. Sci. Technol., A
,
14
(
3
), pp.
928
934
.10.1116/1.580417
30.
Mouche
,
M.-J.
,
Mermet
,
J.-L.
,
Pires
,
F.
,
Richard
,
E.
,
Torres
,
J.
,
Palleau
,
J.
, and
Braud
,
F.
,
1995
, “
Process Optimization of Copper MOCVD Using Modeling Experimental Design
,”
Appl. Surf. Sci
,
91
(
1
), pp.
129
133
.10.1016/0169-4332(95)00107-7
31.
Chiu
,
W. K.
,
Jaluria
,
Y.
, and
Glumac
,
N. G.
,
2002
, “
Control of Thin Film Growth in Chemical Vapor Deposition Manufacturing Systems: A Feasibility Study
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
715
724
.10.1115/1.1465434
32.
George
,
P.
,
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2009
, “
Reliability-Based Optimisation of Chemical Vapour Deposition Process
,”
Int. J. Reliab. Saf.
,
3
(
4
), pp.
363
383
.10.1504/IJRS.2009.028582
33.
George
,
P.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2006
, “
Optimization of Chemical Vapor Deposition Process
,”
ASME
Paper No. DETC2006-99748.10.1115/DETC2006-99748
34.
George
,
P.
,
Jaluria
,
Y.
, and
Gea
,
H.
,
2006
, “
Optimization of the Chemical Vapor Deposition Process for the Fabrication of Thin Films
,”
International Heat Transfer Conference 13
, Sydney, Australia, Aug. 13–18.10.1615/IHTC13.p11.60
35.
George
,
P.
,
Meng
,
J.
, and
Jaluria
,
Y.
,
2014
, “
Optimization of the Chemical Vapor Deposition Process for Gallium Nitride
,”
International Heat Transfer Conference 15
, Kyoto, Japan, Aug. 10–15, Paper No. IHTC-15-8601.10.1615/IHTC15.mfp.008601
36.
George
,
P.
,
2007
, “
Simulation and Optimization of the Chemical Vapor Deposition Process
,” Ph.D. thesis, Rutgers,
The State University of New Jersey
,
Piscataway, NJ
.
37.
Morkoc
,
H.
,
Strite
,
S.
,
Gao
,
G.
,
Lin
,
M.
,
Sverdlov
,
B.
, and
Burns
,
M.
,
1994
, “
Large-Band-Gap SiC, III–V Nitride, and II–VI ZnSe-Based Semiconductor Device Technologies
,”
J. Appl. Phys.
,
76
(
3
), pp.
1363
1398
.10.1063/1.358463
38.
Mazumder
,
S.
, and
Lowry
,
S. A.
,
2001
, “
The Importance of Predicting Rate-Limited Growth for Accurate Modeling of Commercial MOCVD Reactors
,”
J. Cryst. Growth
,
224
(
1
), pp.
165
174
.10.1016/S0022-0248(01)00813-2
39.
Safvi
,
S.
,
Redwing
,
J.
,
Tischler
,
M.
, and
Kuech
,
T.
,
1997
, “
GaN Growth by Metalorganic Vapor Phase Epitaxy a Comparison of Modeling and Experimental Measurements
,”
J. Electrochem. Soc.
,
144
(
5
), pp.
1789
1796
.10.1149/1.1837681
40.
Wu
,
B.
,
Ma
,
R.
, and
Zhang
,
H.
,
2003
, “
Epitaxy Growth Kinetics of GaN Films
,”
J. Cryst. Growth
,
250
(
1
), pp.
14
21
.10.1016/S0022-0248(02)02208-X
41.
Theodoropoulos
,
C.
,
Mountziaris
,
T.
,
Moffat
,
H.
, and
Han
,
J.
,
2000
, “
Design of Gas Inlets for the Growth of Gallium Nitride by Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
217
(
1
), pp.
65
81
.10.1016/S0022-0248(00)00402-4
42.
Sengupta
,
D.
,
Mazumder
,
S.
,
Kuykendall
,
W.
, and
Lowry
,
S. A.
,
2005
, “
Combined Ab Initio Quantum Chemistry and Computational Fluid Dynamics Calculations for Prediction of Gallium Nitride Growth
,”
J. Cryst. growth
,
279
(
3
), pp.
369
382
.10.1016/j.jcrysgro.2005.02.036
43.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Numerical Simulation of GaN Growth in a Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061013
.10.1115/1.4025781
44.
Kim
,
C. S.
,
Hong
,
J.
,
Shim
,
J.
,
Kim
,
B. J.
,
Kim
,
H.-H.
,
Sang
,
D. Y.
, and
Lee
,
W. S.
,
2008
, “
Numerical and Experimental Study on Metal Organic Vapor-Phase Epitaxy of InGaN/GaN Multi-Quantum-Wells
,”
ASME J. Fluids Eng.
,
130
(
8
), p.
081601
.10.1115/1.2956513
45.
Yakovlev
,
E.
,
Talalaev
,
R.
,
Makarov
,
Y. N.
,
Yavich
,
B.
, and
Wang
,
W.
,
2004
, “
Deposition Behavior of GaN in AIX 200/4 RF-S Horizontal Reactor
,”
J. Cryst. Growth
,
261
(
2
), pp.
182
189
.10.1016/j.jcrysgro.2003.11.010
46.
Kadinski
,
L.
,
Merai
,
V.
,
Parekh
,
A.
,
Ramer
,
J.
,
Armour
,
E.
,
Stall
,
R.
,
Gurary
,
A.
,
Galyukov
,
A.
, and
Makarov
,
Y.
,
2004
, “
Computational Analysis of GaN/InGaN Deposition in MOCVD Vertical Rotating Disk Reactors
,”
J. Cryst. Growth
,
261
(
2
), pp.
175
181
.10.1016/j.jcrysgro.2003.11.083
47.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Thermal Transport in the Gallium Nitride Chemical Vapor Deposition Process
,”
ASME
Paper No. HT2013-17081.10.1115/HT2013-17081
48.
George
,
P.
, and
Ogot
,
M.
,
2005
, “
A Compromise Method for the Design of Parametric Polynomial Surrogate Models
,”
ASME
Paper No. DETC2005-85469.10.1115/DETC2005-85469
49.
George
,
P.
, and
Ogot
,
M. M.
,
2006
, “
A Compromise Experimental Design Method for Parametric Polynomial Response Surface Approximations
,”
J. Appl. Stat.
,
33
(
10
), pp.
1037
1050
.10.1080/02664760600746533
50.
George
,
P.
,
2004
, “
Compromise Response Surface Method
,” Master's thesis, Rutgers,
The State University of New Jersey
,
Piscataway, NJ
.
51.
Salinger
,
A. G.
,
Shadid
,
J. N.
,
A Hutchinson
,
S.
,
Hennigan
,
G. L.
,
Devine
,
K. D.
, and
Moffat
,
H. K.
,
1999
, “
Analysis of Gallium Arsenide Deposition in a Horizontal Chemical Vapor Deposition Reactor Using Massively Parallel Computations
,”
J. Cryst. Growth
,
203
(
4
), pp.
516
533
.10.1016/S0022-0248(99)00140-2
52.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
, 4th ed.,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
53.
Atkinson
,
A.
, and
Donev
,
A.
,
1992
,
Optimum Experimental Designs
,
Claredon Press
,
New York
.
54.
Dykstra
,
O.
,
1971
, “
The Augmentation of Experimental Data to Maximize |X'X|
,”
Technometrics
,
13
(
3
), pp.
682
688
.10.1080/00401706.1971.10488830
55.
Hebble
,
T.
, and
Mitchell
,
T.
,
1972
, “
Repairing Response Surface Designs
,”
Technometrics
,
14
(
3
), pp.
767
779
.10.1080/00401706.1972.10488965
56.
Mitchell
,
T.
,
1968
, “
Augmenting Response Surface Designs
,” Mathematics Division Annual Progress Report, Report No. ORNL-4385, Oak Ridge National Laboratory, Oak Ridge, TN, pp.
57
60
.
57.
Deb
,
K.
,
2001
, “
Multi-Objective Optimization
,”
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
, pp.
13
46
.
58.
Hirako
,
A.
,
Kusakabe
,
K.
, and
Ohkawa
,
K.
,
2005
, “
Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study
,”
Jpn. J. Appl. Phys.
,
44
, pp.
874
879
.10.1143/JJAP.44.874
You do not currently have access to this content.