This work is aimed at contributing to the thermal analysis of slip flow through circular microducts, providing an analytical solution to the energy conservation equation for partially heated walls. A uniform wall heat flux (H2 boundary conditions) is considered on the heated perimeter of the cross section while the remaining arc length is assumed to be adiabatic. The gaseous flow is considered laminar, fully developed, in steady state condition, and forced convection. The temperature profile, wall temperature distribution, and Nusselt number are presented as functions of both the heated perimeter of the cross section and the Knudsen number, resorting to simple converging series of trigonometric functions. The proposed solution can be useful for the design of the microfluidic devices such as micro heat sinks and micro heat exchangers.

References

1.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
2.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows—Fundamentals and Simulation
,
Springer
,
New York
, Chap. 2.
3.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
ASME J. Heat Transfer
,
84
(
4
), pp.
363
369
.10.1115/1.3684399
4.
Barron
,
R. F.
,
Wang
,
X.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
,
1997
, “
The Graetz Problem Extended to Slip-Flow
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1817
1823
.10.1016/S0017-9310(96)00256-6
5.
Larrodé
,
F. E.
,
Housiadas
,
C.
, and
Drossinos
,
Y.
,
2000
, “
Slip-Flow Heat Transfer in Circular Tubes
,”
Int. J. Heat and Mass Transfer
,
43
(
15
), pp.
2669
2680
.10.1016/S0017-9310(99)00324-5
6.
Ameel
,
T. A.
,
Wang
,
X.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1997
, “
Laminar Forced Convection in a Circular Tube With Constant Heat Flux and Slip Flow
,”
Microscale Thermophys. Eng.
,
1
(
4
), pp.
303
320
.10.1080/108939597200160
7.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
,
2001
, “
Heat Transfer in Microtubes With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2395
2403
.10.1016/S0017-9310(00)00298-2
8.
Aydin
,
O.
, and
Avci
,
M.
,
2006
, “
Heat and Fluid Flow Characteristics of Gases in Micropipes
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1723
1730
.10.1016/j.ijheatmasstransfer.2005.10.020
9.
Cetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakac
,
S.
,
2008
, “
Fluid Flow in Microtubes With Axial Conduction Including Rarefaction and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
535
544
.10.1016/j.icheatmasstransfer.2008.01.003
10.
Cetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakac
,
S.
,
2009
, “
Slip-Flow Heat Transfer in Microtubes With Axial Conduction and Viscous Dissipation—An Extended Graetz Problem
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1673
1678
.10.1016/j.ijthermalsci.2009.02.002
11.
Bahrami
,
H.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Forced Convective Heat Transfer in a Microtube Including Rarefaction, Viscous Dissipation and Axial Conduction Effects
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6655
6675
.10.1016/j.ijheatmasstransfer.2012.06.075
12.
Liu
,
H. L.
,
Shao
,
X. D.
, and
Jia
,
J. Y.
,
2013
, “
Effects of Axial Heat Conduction and Viscous Dissipation on Heat Transfer in Circular Micro-Channels
,”
Int. J. Therm. Sci.
,
66
, pp.
34
41
.10.1016/j.ijthermalsci.2012.11.007
13.
Yu
,
S.
, and
Ameel
,
T. A.
,
2001
, “
Slip-Flow Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4225
4234
.10.1016/S0017-9310(01)00075-8
14.
Kuddusi
,
L.
, and
Çetegen
,
E.
,
2007
, “
Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for all Versions of Constant Heat Flux
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
777
786
.10.1016/j.ijheatfluidflow.2006.09.002
15.
Kuddusi
,
L.
,
2007
, “
Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for all Versions of Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
46
, pp.
998
1010
.10.1016/j.ijthermalsci.2006.12.006
16.
Zhu
,
X.
,
Liao
,
Q.
, and
Xin
,
M.
,
2004
, “Analysis of the Heat Transfer in Unsymmetrically Heated Triangular Microchannels in Slip Flow Regime,”
Sci. China, Ser. E: Technol. Sci.
,
47
(4), pp. 436–446.
17.
Vocale
,
P.
,
Morini
,
G. L.
, and
Spiga
,
M.
, 2014 “Dilute gas Flows Through Elliptic Microchannels Under H2 Boundary Conditions,”
Int. J. Heat Mass Transfer
,
71
, pp. 376–385.
18.
Spiga
,
M.
, and
Vocale
,
P.
,
2012
, “Slip Flow in Elliptic Microducts With Constant Heat Flux,”
Adv. Mech. Eng.
,
2012
, p. 481280.
19.
Gradshteyn
,
I. S.
, and
Ryzhik
,
L. M.
,
2000
, Table of Integrals, Series, and Products, Academic Press, San Diego.
20.
Spiga
,
M.
, and
Morini
,
G. L.
,
1996
, “
Nusselt Numbers in Laminar Flow for H2 Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1165
1174
.10.1016/0017-9310(95)00205-7
21.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
You do not currently have access to this content.