In this paper, the problem of steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow and heat transfer of an incompressible viscous fluid over a stretching/shrinking sheet is investigated in the presence of velocity and thermal slips. With the help of similarity transformations, the governing Navier–Stokes and the energy equations are reduced to ordinary differential equations, which are then solved numerically using a shooting technique. Interesting solution behavior is observed for the similarity equations with multiple solution branches for certain parameter domain. Fluid velocity increases due to the increasing value of the velocity slip parameter resulting in a decrease in the temperature field. Temperature at a point increases with increase in the thermal slip parameter. The effects of the slips, stretching/shrinking, and the magnetic parameters on the skin friction or the wall shear stress, heat flux from the surface of the sheet, velocity, and temperature profiles are computed and discussed.

References

1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
ZAMP
,
21
, pp.
645
647
.10.1007/BF01587695
2.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
3.
Pavlov
,
K. B.
,
1974
, “
Magnetohydrodynamic Flow of an Incompressible Viscous Fluid Caused by the Deformation of a Plane Surface
,” Magnitnaya Gidrodinamika, (English translation, Magnetohydrodynamics, pp. 507-510),
10
(4), pp. 146–148.
4.
Chakrabarti
,
A.
, and
Gupta
,
A. S.
,
1979
, “
Hydromagnetic Flow and Heat Transfer Over a Stretching Sheet
,”
Q. Appl. Math.
,
37
, pp.
73
78
.
5.
Hiemenz
,
K.
,
1911
, “
Die Grenzschicht in Einem in Dem Gleichformingen Flussigkeitsstrom Eingetauchten Gerade Kreiszlinder
,”
Dingler Polytech J.
,
326
, pp.
321
410
.
6.
Howarth
,
L.
,
1938
, “
On the Solution of the Laminar Boundary Layer Equations
,”
Proc. R. Soc. London, Ser. A
,
164
, pp.
547
579
.10.1098/rspa.1938.0037
7.
Chiam
,
T. C.
,
1994
, “
Stagnation-Point Flow Towards a Stretching Plate
,”
J. Phys. Soc. Jpn.
,
63
, pp.
2443
2444
.10.1143/JPSJ.63.2443
8.
Mahapatra
,
T. R.
, and
Gupta
,
A. S.
,
2002
, “
Heat Transfer in Stagnation-Point Flow Towards a Stretching Sheet
,”
Heat Mass Transfer
,
38
, pp.
517
521
.10.1007/s002310100215
9.
Layek
,
G. C.
,
Mukhopadhyay
,
S.
, and
Samad
,
S. A.
,
2007
, “
Heat and Mass Transfer Analysis for Boundary Layer Stagnation Point Flow Towards a Heated Porous Stretching Sheet With Heat Absorption/Generation and Suction/Blowing
,”
Int. Commun. Heat Mass Transfer
,
34
, pp.
347
356
.10.1016/j.icheatmasstransfer.2006.11.011
10.
Mahapatra
,
T. R.
, and
Gupta
,
A. S.
,
2001
, “
Magnetohydrodynamic Stagnation-Point Flow Towards a Stretching Sheet
,”
Acta Mech.
,
152
, pp.
191
196
.10.1007/BF01176953
11.
Ishak
,
A.
,
Jafar
,
K.
,
Nazar
,
R.
, and
Pop
,
I.
,
2009
, “
MHD Stagnation Point Flow Towards a Stretching Sheet
,”
Physica A
,
388
, pp.
3377
3383
.10.1016/j.physa.2009.05.026
12.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
, and
Gupta
,
A. S.
,
2009
, “
Magnetohydrodynamic Stagnation-Point Flow of a Power-Law Fluid Towards a Stretching Surface
,”
Int. J. Non-Linear Mech.
,
44
, pp.
124
129
.10.1016/j.ijnonlinmec.2008.09.005
13.
Nadeem
,
S.
,
Hussain
,
M.
, and
Naz
,
M.
,
2010
, “
MHD Stagnation Flow of a Micropolar Fluid Through a Porous Medium
,”
Meccanica
,
45
, pp.
869
880
.10.1007/s11012-010-9297-9
14.
Goldstein
,
S.
,
1965
, “
On Backward Boundary Layers and Flow in Converging Passages
,”
J. Fluid Mech.
,
21
, pp.
33
45
.10.1017/S0022112065000034
15.
Miklavčič
,
M.
, and
Wang
,
C. Y.
,
2006
, “
Viscous Flow Due to a Shrinking Sheet
,”
Q. Appl. Math.
,
64
, pp.
283
290
.
16.
Fang
,
T.
,
2008
, “
Boundary Layer Flow Over a Shrinking Sheet With Power-Law Velocity
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5838
5843
.10.1016/j.ijheatmasstransfer.2008.04.067
17.
Fang
,
T.
,
Zhang
,
J.
, and
Yao
,
S.
,
2009
, “
Viscous Flow Over an Unsteady Shrinking Sheet With Mass Transfer
,”
Chin. Phys. Lett.
,
26
, p.
014703
.10.1088/0256-307X/26/1/014703
18.
Ishak
,
A.
,
Lok
,
Y. Y.
, and
Pop
,
I.
,
2010
, “
Stagnation-Point Flow Over a Shrinking Sheet in a Micropolar Fluid
,”
Chem. Eng. Commum.
,
197
, pp.
1417
1427
.10.1080/00986441003626169
19.
Fan
,
T.
,
Xu
,
H.
, and
Pop
,
I.
,
2010
, “
Unsteady Stagnation Flow and Heat Transfer Towards a Shrinking Sheet
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
1440
1446
.10.1016/j.icheatmasstransfer.2010.08.002
20.
Sajid
,
M.
, and
Hayat
,
T.
,
2009
, “
The Application of Homotopy Analysis Method for MHD Viscous Flow Due to a Shrinking Sheet
,”
Chaos, Solitons Fractals
,
39
, pp.
1317
1323
.10.1016/j.chaos.2007.06.019
21.
Fang
,
T.
, and
Zhang
,
J.
,
2009
, “
Closed Form Exact Solution of MHD Viscous Flow Over a Shrinking Sheet
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
2853
2857
.10.1016/j.cnsns.2008.10.005
22.
Wang
,
C. Y.
,
2008
, “
Stagnation Flow Towards a Shrinking Sheet
,”
Int. J. Non-Linear Mech.
,
43
, pp.
377
382
.10.1016/j.ijnonlinmec.2007.12.021
23.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
, and
Gupta
,
A. S.
,
2011
, “
Momentum and Heat Transfer in MHD Stagnation-Point Flow Over a Shrinking Sheet
,”
ASME J. Appl. Mech.
,
78
,
p. 021015
.10.1115/1.4002577
24.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Condition at Naturally Permeable Wall
,”
J. Fluid. Mech.
,
30
, pp.
197
207
.10.1017/S0022112067001375
25.
Wang
,
C. Y.
,
2002
, “
Flow Due to a Stretching Boundary With Partial Slip—An Exact Solution of the Navier–Stokes Equations
,”
Chem. Eng. Sci.
,
57
, pp.
3745
3747
.10.1016/S0009-2509(02)00267-1
26.
Andersson
,
H. I.
,
2002
, “
Slip Flow Past a Stretching Surface
,”
Acta Mech.
,
158
, pp.
121
125
.10.1007/BF01463174
27.
Fang
,
T.
,
Zhang
,
J.
, and
Yao
,
S.
,
2009
, “
Slip MHD Viscous Flow Over a Stretching Sheet—An Exact Solution
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
3731
3737
.10.1016/j.cnsns.2009.02.012
28.
Mukhopadhyay
,
S.
, and
Andersson
,
H. I.
,
2009
, “
Effects of Slip and Heat Transfer Analysis of Flow Over an Unsteady Stretching Surface
,”
Heat Mass Transfer
,
45
, pp.
1447
1452
.10.1007/s00231-009-0516-7
29.
Mukhopadhyay
,
S.
,
2010
, “
Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface
,”
Chin. Phys. Lett.
,
27
,
p. 124401
.10.1088/0256-307X/27/12/124401
30.
Fang
,
T.
,
Yao
,
S.
,
Zhang
,
J.
, and
Aziz
,
A.
,
2010
, “
Viscous Flow Over a Shrinking Sheet With a Second Order Slip Flow Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
1831
1842
.10.1016/j.cnsns.2009.07.017
31.
Bhattacharyya
,
K.
,
Mukhopadhyay
,
S.
, and
Layek
,
G. C.
,
2011
, “
Slip Effects on Boundary Layer Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet
,”
Int. J. Heat Mass Transfer
,
54
, pp.
308
313
.10.1016/j.ijheatmasstransfer.2010.09.041
32.
Fang
,
T.
,
Zhang
,
J.
, and
Yao
,
S. S.
,
2010
, “
Slip Magnetohydrodynamic Viscous Flow Over a Permeable Shrinking Sheet
,”
Chin. Phys. Lett.
,
27
,
p. 124702
.10.1088/0256-307X/27/12/124702
33.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2010
, “
MHD Mixed Convection From a Vertical Plate Embedded in a Porous Medium With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
49
, pp.
1813
820
.10.1016/j.ijthermalsci.2010.05.015
34.
Pop
,
I.
,
Ishak
,
A.
, and
Aman
,
F.
,
2011
, “
Radiation Effects on the MHD Flow Near the Stagnation Point of a Stretching Sheet: Revisited
,”
ZAMP
,
62
, pp.
953
956
.10.1007/s00033-011-0131-6
35.
Shercliff
,
J. A.
,
1965
,
A Textbook of Magnetohydrodynamics
, Pergamon Press, Oxford, UK.
36.
Weidman
,
P. D.
,
Kubitschek
,
D. G.
, and
Davis
,
A. M. J.
,
2006
, “
The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces
,”
Int. J. Eng. Sci.
,
44
, pp.
730
737
.10.1016/j.ijengsci.2006.04.005
37.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
, and
Gupta
,
A. S.
,
2010
, “
Dual Solution of MHD Stagnation-Point Flow Towards a Stretching Surface
,”
Engineering
,
2
, pp.
299
305
.10.4236/eng.2010.24039
38.
Roşca
,
A. V.
, and
Pop
,
I.
,
2013
, “
Flow and Heat Transfer Over a Vertical Permeable Stretching/Shrinking Sheet With a Second Order Slip
,”
Int. J. Heat Mass Transfer
,
60
, pp.
355
364
.10.1016/j.ijheatmasstransfer.2012.12.028
You do not currently have access to this content.