Confined jet impingement with boiling offers unique and attractive performance characteristics for thermal management of high heat flux components. Two-phase operation of jet impingement has been shown to provide high heat transfer coefficients while maintaining a uniform temperature over a target surface. This can be achieved with minimal increases in pumping power compared to single-phase operation. To investigate further enhancements in heat transfer coefficients and increases in the maximum heat flux supported by two-phase jet impingement, an experimental study of surface enhancements is performed using the dielectric working fluid HFE-7100. The performance of a single, 3.75 mm-diameter jet orifice is compared across four distinct copper target surfaces of varying enhancement scales: a baseline smooth flat surface, a flat surface coated with a microporous layer, a surface with macroscale area enhancement (extended square pin fins), and a hybrid surface on which the pin fins are coated with the microporous layer. The heat transfer performance of each surface is compared in single- and two-phase operation at three volumetric flow rates (450 ml/min, 900 ml/min, and 1800 ml/min); area-averaged heat transfer parameters and pressure drop are reported. The mechanisms resulting in enhanced performance for the different surfaces are identified, with a special focus on the coated pin fins. This hybrid surface showed the best enhancement of all those tested, and resulted in an extension of critical heat flux (CHF) by a maximum of 2.42 times compared to the smooth flat surface at the lowest flow rate investigated; no increase in the overall pressure drop was measured.

References

1.
Garimella
,
S. V.
,
2000
, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Annu. Rev. Heat Transfer
,
11
, pp.
413
494
.10.1615/AnnualRevHeatTransfer.v11.90
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
3.
Rau
,
M. J.
, and
Garimella
,
S. V.
,
2013
, “
Local Two-Phase Heat Transfer From Arrays of Confined and Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
67
, pp.
487
498
.10.1016/j.ijheatmasstransfer.2013.08.041
4.
Dukle
,
N. M.
, and
Hollingsworth
,
D. K.
,
1996
, “
Liquid Crystal Images of the Transition From Jet Impingement Convection to Nucleate Boiling Part I: Monotonic Distribution of the Convection Coefficient
,”
Exp. Therm. Fluid Sci.
,
12
(
3
), pp.
274
287
.10.1016/0894-1777(95)00075-5
5.
Dukle
,
N. M.
, and
Hollingsworth
,
D. K.
,
1996
, “
Liquid Crystal Images of the Transition From Jet Impingement Convection to Nucleate Boiling Part II: NonMonotonic Distribution of the Convection Coefficient
,”
Exp. Therm. Fluid Sci.
,
12
(
3
), pp.
288
297
.10.1016/0894-1777(95)00074-7
6.
Vader
,
D. T.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1992
, “
Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
152
160
.10.1115/1.2911241
7.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1996
, “
Local Jet Impingement Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
7
), pp.
1395
1406
.10.1016/0017-9310(95)00216-2
8.
Ma
,
C.-F.
, and
Bergles
,
A. E.
,
1983
, “
Boiling Jet Impingement Cooling of Simulated Microelectronic Chips
,”
Proceedings of the Symposium Heat Transfer in Electronic Equipment-1983
,
Boston, MA
, Nov. 13–18, ASME, New York, Vol.
28
, pp.
5
12
.
9.
Zhou
,
D. W.
, and
Ma
,
C. F.
,
2004
, “
Local Jet Impingement Boiling Heat Transfer With R113
,”
Heat Mass Transfer
,
40
(
6–7
), pp.
539
549
.10.1007/s00231-003-0463-7
10.
Mitsutake
,
Y.
, and
Monde
,
M.
,
2003
, “
Ultra High Critical Heat Flux During Forced Flow Boiling Heat Transfer With an Impinging Jet
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1038
1045
.10.1115/1.1621899
11.
3M
,
2009
,
3M Thermal Management Fluids
,
3M, St. Paul
,
MN
, pp.
1
8
.
12.
Webb
,
R. L.
,
1981
, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transfer Eng.
,
2
(
3–4
), pp.
46
69
.10.1080/01457638108962760
13.
Webb
,
R. L.
,
1983
, “
Nucleate Boiling on Porous Coated Surface
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
71
82
.10.1080/01457638108939610
14.
Webb
,
R. L.
,
2004
, “
Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1051
1059
.10.1115/1.1834615
15.
Honda
,
H.
, and
Wei
,
J. J.
,
2004
, “
Enhanced Boiling Heat Transfer From Electronic Components by Use of Surface Microstructures
,”
Exp. Therm. Fluid Sci.
,
28
, pp.
159
169
.10.1016/S0894-1777(03)00035-9
16.
Bergles
,
A. E.
, and
Chyu
,
M. C.
,
1982
, “
Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
279
285
.10.1115/1.3245084
17.
Marto
,
P. J.
, and
Lepere
,
V. J.
,
1982
, “
Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
292
299
.10.1115/1.3245086
18.
Thiagarajan
,
S. J.
,
Wang
,
W.
,
Yang
,
R.
,
Narumanchi
,
S.
, and
King
,
C.
,
2010
, “
Enhancement of Heat Transfer With Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings
,”
ASME
Paper No. IHTC14-23284.10.1115/IHTC14-23284
19.
3M
,
2009
,
3M Microporous Metallic Boiling Enhancement Coating (BEC) L 20227
,
3M, St. Paul
,
MN
, pp.
1
2
.
20.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhancement of Saturation Boiling of PF-5060 on Microporous Copper Dendrite Surfaces
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071501
.10.1115/1.4000975
21.
You
,
S. M.
,
Simon
,
T. W.
, and
Bar-Cohen
,
A.
,
1992
, “
A Technique for Enhancing Boiling Heat Transfer With Application to Cooling of Electronic Equipment
,”
IEEE Trans. Compon. Hybrids
,
15
(
5
), pp.
823
831
.10.1109/33.180048
22.
O'Connor
,
J. P.
, and
You
,
S. M.
,
1995
, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in Saturated FC-72
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
387
393
.10.1115/1.2822534
23.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Micro-Porous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4437
4447
.10.1016/S0017-9310(97)00055-0
24.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Micro-Porous Surfaces: Effects of a Coating Composition and Method
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4449
4460
.10.1016/S0017-9310(97)00057-4
25.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Micro-Porous Cylindrical Surfaces in Saturated FC-87 and R-123
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
319
325
.10.1115/1.2824226
26.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
75
83
.10.1115/1.1527890
27.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
,
2007
, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
,
50
(5–6), pp.
997
1009
.10.1016/j.ijheatmasstransfer.2006.08.005
28.
Ammerman
,
C. N.
, and
You
,
S. M.
,
2001
, “
Enhancing Small-Channel Convective Boiling Performance Using a Microporous Surface Coating
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
976
983
.10.1115/1.1388300
29.
Rainey
,
K. N.
,
Li
,
G.
, and
You
,
S. M.
,
2001
, “
Flow Boiling Heat Transfer From Plain and Microporous Coated Surfaces in Subcooled FC-72
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
918
925
.10.1115/1.1389465
30.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1992
, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux From an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
764
768
.10.1115/1.2911348
31.
Copeland
,
D.
,
1995
, “
Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Slot Nozzle Suction and Impingement
,”
IEEE Trans. Compon. Pack. A
,
18
(
3
), pp.
510
516
.10.1109/95.465145
32.
Anderson
,
T. M.
, and
Mudawar
,
I.
,
1989
, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
752
759
.10.1115/1.3250747
33.
Guglielmini
,
G.
,
Misale
,
M.
, and
Schenone
,
C.
,
2002
, “
Boiling of Saturated FC-72 on Square Pin Fin Arrays
,”
Int. J. Therm. Sci.
,
41
(7), pp.
599
608
.10.1016/S1290-0729(02)01353-4
34.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2009
, “
Saturation Boiling of HFE-7100 Dielectric Liquid on Copper Surfaces With Corner Pins at Different Inclinations
,”
J. Enhanced Heat Transfer
,
16
(
2
), pp.
103
122
.10.1615/JEnhHeatTransf.v16.i2.20
35.
Klein
,
G. J.
, and
Westwater
,
J. W.
,
1971
, “
Heat Transfer From Multiple Spines to Boiling Liquids
,”
AIChE J.
,
17
(
5
), pp.
1050
1056
.10.1002/aic.690170507
36.
Yu
,
C. K.
, and
Lu
,
D. C.
,
2007
, “
Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3624
3637
.10.1016/j.ijheatmasstransfer.2007.02.003
37.
Wei
,
J. J.
, and
Honda
,
H.
,
2003
, “
Effects of Fin Geometry on Boiling Heat Transfer From Silicon Chips With Micro-Pin-Fins Immersed in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(21), pp.
4059
4070
.10.1016/S0017-9310(03)00226-6
38.
McHale
,
J. P.
,
Garimella
,
S. V.
,
Fisher
,
T. S.
, and
Powell
,
G. A.
,
2011
, “
Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces With and Without Carbon Nanotubes
,”
Nanoscale Microscale. Thermophys. Eng.
,
15
(3), pp.
133
150
.10.1080/15567265.2011.575918
39.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
509
516
.10.1115/1.1288708
40.
Lay
,
J. H.
, and
Dhir
,
V. K.
,
1995
, “
Nucleate Boiling Heat Flux Enhancement on Macro/Micro-Structured Surfaces Cooled by an Impinging Jet
,”
J. Enhanced Heat Transfer
,
2
(
3
), pp.
177
188
.
41.
Rau
,
M. J.
,
Garimella
,
S. V.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2014
, “
Boiling Heat Transfer From an Array of Round Jets With Hybrid Surface Enhancements
,”
ASME J. Heat Transfer
, (in review).
42.
3M
,
2002
,
3M Novec Engineered Fluid HFE-7100 for Heat Transfer
,
3M, St. Paul
,
MN
, pp.
1
8
.
43.
Chen
,
T.
, and
Garimella
,
S. V.
,
2006
, “
Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
398
404
.10.1115/1.2351905
44.
Moreno
,
G.
,
Narumanchi
,
S.
, and
King
,
C.
,
2011
, “
Pool Boiling Heat Transfer Characteristics of HFO-1234yf With and Without Microporous-Enhanced Surfaces
,”
ASME
Paper No. IMECE2011-64002.10.1115/IMECE2011-64002
45.
Tuma
,
P. E.
,
2006
, “
Evaporator/Boiler Design for Thermosyphons Utilizing Segregated Hydrofluoroether Working Fluids
,”
Proceedings of the 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
Dallas, TX
, Mar. 14–16, pp.
69
77
.
46.
ANSYS® FLUENT
, Academic Research, Release 14.0.
47.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121009
.10.1115/1.3220144
48.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed., Wiley & Sons, Hoboken, NJ.
49.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
1992
,
Data Reduction and Error Analysis for the Physical Sciences
, 2nd ed.,
McGraw-Hill
,
NY
.
50.
Moreno
,
G.
,
Narumanchi
,
S.
,
Venson
,
T.
, and
Bennion
,
K.
,
2013
, “
Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031004
.10.1115/1.4023308
51.
“See supplementary material for high speed videos of the images shown in Fig. 7.”
You do not currently have access to this content.