The linear stability of the parallel Darcy throughflow in a horizontal plane porous layer with impermeable boundaries subject to a symmetric net heating or cooling is investigated. The onset conditions for the secondary thermoconvective flow are expressed through a neutral stability bound for the Darcy–Rayleigh number associated with the uniform heat flux supplied or removed from the walls. The study is performed by taking into account a condition of local thermal nonequilibrium between the solid phase and the fluid phase. The linear stability analysis is carried out according to the normal modes' decomposition of the perturbations to the basic state. The governing equations for the disturbances are solved numerically as an eigenvalue problem leading to the neutral stability condition. If compared with the asymptotic condition of local thermal equilibrium, the regime of local nonequilibrium manifests an enhanced instability. This behavior is displayed by lower critical values of the Darcy–Rayleigh number, eventually tending to zero when the thermal conductivity of the solid phase is much larger than the conductivity of the fluid phase. In this special limit, which can be invoked as an approximate model of a gas-saturated metallic foam, the basic throughflow is always unstable to external disturbances of arbitrarily small amplitude.

References

1.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
, pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
2.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part II: Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2762
2770
.10.1016/j.ijheatmasstransfer.2005.12.014
3.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3701
3711
.10.1016/j.ijheatmasstransfer.2007.12.012
4.
Dai
,
Z.
,
Nawaz
,
K.
,
Park
,
Y.
,
Chen
,
Q.
, and
Jacobi
,
A. M.
,
2012
, “
A Comparison of Metal-Foam Heat Exchangers to Compact Multilouver Designs for Air-Side Heat Transfer Applications
,”
Heat Transfer Eng.
,
33
, pp.
21
30
.10.1080/01457632.2011.584812
5.
T'Joen
,
C.
,
De Jaeger
,
P.
,
Huisseune
,
H.
,
Van Herzeele
,
S.
,
Vorst
,
N.
, and
De Paepe
,
M.
,
2010
, “
Thermo-Hydraulic Study of a Single Row Heat Exchanger Consisting of Metal Foam Covered Round Tubes
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3262
3274
.10.1016/j.ijheatmasstransfer.2010.02.055
6.
Tsolas
,
N.
, and
Chandra
,
S.
,
2012
, “
Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger Tubes
,”
ASME J. Heat Transfer
,
134
, p.
062602
.10.1115/1.4006015
7.
Elayiaraja
,
P.
,
Harish
,
S.
,
Wilson
,
L.
,
Bensely
,
A.
, and
Lal
,
D. M.
,
2010
, “
Experimental Investigation on Pressure Drop and Heat Transfer Characteristics of Copper Metal Foam Heat Sink
,”
Exp. Heat Transfer
,
23
, pp.
185
195
.10.1080/08916150903399722
8.
Han
,
X.-H.
,
Wang
,
Q.
,
Park
,
Y.-G.
,
T'Joen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
, pp.
991
1009
.10.1080/01457632.2012.659613
9.
Kim
,
S. Y.
,
Koo
,
J. M.
, and
Kuznetsov
,
A. V.
,
2001
, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink
,”
Numer. Heat Transfer, Part A
,
40
, pp.
21
36
.10.1080/104077801300348851
10.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Pressure Drop During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3121
3130
.10.1016/j.ijheatmasstransfer.2010.03.015
11.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Heat Transfer During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4976
4984
.10.1016/j.ijheatmasstransfer.2010.05.033
12.
Kurtbas
, I
.
, and
Celik
,
N.
,
2009
, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel
,”
Int. J. Heat.Mass Transfer
,
52
, pp.
1313
1325
.10.1016/j.ijheatmasstransfer.2008.07.050
13.
Venugopal
,
G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2010
, “
Experimental Study of Mixed Convection Heat Transfer in a Vertical Duct Filled With Metallic Porous Structures
,”
Int. J. Therm. Sci.
,
49
, pp.
340
348
.10.1016/j.ijthermalsci.2009.07.018
14.
Hayes
,
A. M.
,
Khan
,
J. A.
,
Shaaban
,
A. H.
, and
Spearing
, I
. G.
,
2008
, “
The Thermal Modeling of a Matrix Heat Exchanger Using a Porous Medium and the Thermal Non-equilibrium Model
,”
Int. J. Therm. Sci.
,
47
, pp.
1306
1315
.10.1016/j.ijthermalsci.2007.11.005
15.
Cavallini
,
A.
,
Mancin
,
S.
,
Rossetto
,
L.
, and
Zilio
,
C.
,
2009
, “
Air Flow in Aluminum Foam: Heat Transfer and Pressure Drops Measurements
,”
Exp. Heat Transfer
,
23
, pp.
94
105
.10.1080/08916150903402765
16.
Ghosh
,
I.
,
2008
, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
130
, p.
034501
.10.1115/1.2804941
17.
Ghosh
,
I.
,
2009
, “
Heat Transfer Correlation for High-Porosity Open-Cell Foam
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1488
1494
.10.1016/j.ijheatmasstransfer.2008.07.047
18.
Ghosh
,
I.
,
2009
, “
How Good Is Open-Cell Metal Foam as Heat Transfer Surface?
,”
ASME J. Heat Transfer
,
131
, p.
101004
.10.1115/1.3160537
19.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
, pp.
793
799
.10.1115/1.2227038
20.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
ASME J. Heat Transfer
,
130
, p.
024503
.10.1115/1.2789718
21.
Salas
,
K. I.
, and
Waas
,
A. M.
,
2007
, “
Convective Heat Transfer in Open Cell Metal Foams
,”
ASME J. Heat Transfer
,
129
, pp.
1217
1229
.10.1115/1.2739598
22.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
, pp.
527
544
.10.1080/10407782.2010.511987
23.
Marques
,
C.
, and
Kelly
,
K. W.
,
2004
, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
ASME J. Heat Transfer
,
126
, pp.
434
444
.10.1115/1.1731341
24.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
,
2006
, “
Performance Comparison of Pin Fin In-Duct Flow Arrays With Various Pin Cross-Sections
,”
Appl. Therm. Eng.
,
26
, pp.
1176
1192
.10.1016/j.applthermaleng.2005.10.042
25.
Bejan
,
A.
, and
Morega
,
A. M.
,
1993
, “
Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection
,”
ASME J. Heat Transfer
,
115
, pp.
75
81
.10.1115/1.2910672
26.
Kim
,
S. Y.
, and
Kuznetsov
,
A. V.
,
2003
, “
Optimization of Pin-Fin Heat Sinks Using Anisotropic Local Thermal Nonequilibrium Porous Model in a Jet Impinging Channel
,”
Numer. Heat Transfer, Part A
,
44
, pp.
771
787
.10.1080/716100528
27.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
,
New York
.
28.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, 3rd ed.,
Springer
,
New York
.
29.
Kuznetsov
,
A.
V
.
,
1998
, “
Thermal Nonequilibrium Forced Convection in Porous Media
,”
Transport Phenomena in Porous Media
,
D. B.
Ingham
and
I.
Pop
, eds.,
Pergamon
,
Oxford
, pp.
103
129
.
30.
Rees
,
D. A. S.
, and
Pop
,
I.
,
2005
, “
Local Thermal Non-equilibrium in Porous Medium Convection
,”
Transport Phenomena in Porous Media III
,
D. B.
Ingham
and
I.
Pop
, eds.,
Pergamon
,
Oxford
, pp.
147
173
.
31.
Anzelius
,
A.
,
1926
, “
Über Erwärmung vermittels durchströmender Medien
,”
Z. Angew. Math. Mech.
,
6
, pp.
291
294
.10.1002/zamm.19260060404
32.
Schumann
,
T. E. W.
,
1929
, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
,
208
, pp.
405
416
.10.1016/S0016-0032(29)91186-8
33.
Rees
,
D. A. S.
,
2000
, “
The Stability of Darcy-Bénard Convection
,”
Handbook of Porous Media
,
K.
Vafai
and
H. A.
Hadim
, eds.,
CRC
,
New York
, pp.
521
558
.
34.
Tyvand
,
P. A.
,
2002
, “
Onset of Rayleigh-Bénard Convection in Porous Bodies
,”
Transport Phenomena in Porous Media II
,
D. B.
Ingham
and
I.
Pop
, eds.,
Pergamon
,
New York
, pp.
82
112
.
35.
Banu
,
N.
, and
Rees
,
D. A. S.
,
2002
, “
Onset of Darcy–Bénard Convection Using a Thermal Non-equilibrium Model
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2221
2228
.10.1016/S0017-9310(01)00331-3
36.
Postelnicu
,
A.
,
2007
, “
Effect of Inertia on the Onset of Mixed Convection in a Porous Layer Using a Thermal Nonequilibrium Model
,”
J. Porous Media
,
10
, pp.
515
524
.10.1615/JPorMedia.v10.i5.80
37.
Postelnicu
,
A.
, and
Rees
,
D. A. S.
,
2003
, “
The Onset of Darcy–Brinkman Convection in a Porous Layer Using a Thermal Nonequilibrium Model—Part I: Stress–Free Boundaries
,”
Int. J. Energy Res.
,
27
, pp.
961
973
.10.1002/er.928
38.
Postelnicu
,
A.
,
2008
, “
The Onset of a Darcy–Brinkman Convection Using a Thermal Nonequilibrium Model. Part II
,”
Int. J. Therm. Sci.
,
47
, pp.
1587
1594
.10.1016/j.ijthermalsci.2008.01.002
39.
Nouri-Borujerdi
,
A.
,
Noghrehabadi
,
A. R.
, and
Rees
,
D. A. S.
,
2007
, “
Onset of Convection in a Horizontal Porous Channel With Uniform Heat Generation Using a Thermal Nonequilibrium Model
,”
Transp. Porous Media
,
69
, pp.
343
357
.10.1007/s11242-006-9076-1
40.
Malashetty
,
M. S.
,
Shivakumara
, I
. S.
, and
Kulkarni
,
S.
,
2005
, “
The Onset of Convection in an Anisotropic Porous Layer Using a Thermal Non-Equilibrium Model
,”
Transp. Porous Media
,
60
, pp.
199
215
.10.1007/s11242-004-5130-z
41.
Postelnicu
,
A.
,
2010
, “
The Effect of a Horizontal Pressure Gradient on the Onset of a Darcy–Bénard Convection in Thermal Non-equilibrium Conditions
,”
Int. J. Heat Mass Transfer
,
53
, pp.
68
75
.10.1016/j.ijheatmasstransfer.2009.10.006
42.
Barletta
,
A.
, and
Rees
,
D. A. S.
,
2012
, “
Local Thermal Non-equilibrium Effects in the Darcy-Bénard Instability With Isoflux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
, pp.
384
394
.10.1016/j.ijheatmasstransfer.2011.09.031
43.
Barletta
,
A.
,
2012
, “
Thermal Instability in a Horizontal Porous Channel With Horizontal Through Flow and Symmetric Wall Heat Fluxes
,”
Transp. Porous Media
,
92
, pp.
419
437
.10.1007/s11242-011-9910-y
44.
Yang
,
K.
, and
Vafai
,
K.
,
2010
, “
Analysis of Temperature Gradient Bifurcation in Porous Media – An Exact Solution
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4316
4325
.10.1016/j.ijheatmasstransfer.2010.05.060
45.
Nield
,
D. A.
,
2012
, “
A Note on Local Thermal Non-equilibrium in Porous Media Near Boundaries and Interfaces
,”
Transp. Porous Media
,
95
, pp.
581
584
.10.1007/s11242-012-0063-4
46.
Rees
,
D. A. S.
, and
Bassom
,
A. P.
,
2000
, “
Onset of Darcy-Bénard Convection in an Inclined Layer Heated From Below
,”
Acta Mech.
,
144
, pp.
103
118
.10.1007/BF01181831
47.
Wolfram
,
S.
,
2003
,
The Mathematica Book
, 5th ed.,
Wolfram Media
,
Champaign, IL
.
You do not currently have access to this content.