Thermal properties and transport control are important for many applications, for example, low thermal conductivity is desirable for thermoelectrics. Knowledge of mode-wise phonon properties is crucial to identify dominant phonon modes for thermal transport and to design effective phonon barriers for thermal transport control. In this paper, we adopt time-domain (TD) and frequency-domain (FD) normal-mode analyses to investigate mode-wise phonon properties and to calculate phonon dispersion relations and phonon relaxation times in bismuth telluride. Our simulation results agree with the previously reported data obtained from ultrafast time-resolved measurements. By combining frequency-dependent anharmonic phonon group velocities and lifetimes, mode-wise thermal conductivities are predicted to reveal the contributions of heat carriers with different wavelengths and polarizations.

References

1.
Hook
,
J. R.
, and
Hall
,
H. E.
,
1991
,
Solid State Physics
, Vol.
xxi
,
Wiley
,
Chichester; New York
, p.
474
.
2.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp.
141
152
. Available at http://web.mit.edu/nanoengineering/publications/PDFs/Henry_JCompTheoNanoSci_2008.pdf
3.
Huang
,
Z.
,
Fisher
,
T. S.
, and
Murthy
,
J. Y.
,
2010
, “
Simulation of Phonon Transmission Through Graphene and Graphene Nanoribbons With a Green's Function Method
,”
J. Appl. Phys.
,
108
, p.
094319
.10.1063/1.3499347
4.
Wang
,
Y.
,
Liebig
,
C.
,
Xu
,
X.
, and
Venkatasubramanian
,
R.
,
2010
, “
Acoustic Phonon Scattering in Bi2Te3/Sb2Te3 Superlattices
,”
Appl. Phys. Lett.
,
97
, p.
083103
.10.1063/1.3483767
5.
Wang
,
Y. G.
,
Xu
,
X. F.
, and
Venkatasubramanian
,
R.
,
2008
, “
Reduction in Coherent Phonon Lifetime in Bi2Te3/Sb2Te3 Superlattices
,”
Appl. Phys. Lett.
,
93
, p.
113114
.10.1063/1.2987518
6.
Wu
,
A. Q.
,
Xu
,
X.
, and
Venkatasubramanian
,
R.
,
2008
, “
Ultrafast Dynamics of Photoexcited Coherent Phonon in Bi2Te3 Thin Films
,”
Appl. Phys. Lett.
,
92
, p.
011108
.10.1063/1.2829604
7.
Huang
,
B. L.
, and
Kaviany
,
M.
,
2008
, “
Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride
,”
Phys. Rev. B
,
77
, p.
125209
.10.1103/PhysRevB.77.125209
8.
Qiu
,
B.
, and
Ruan
,
X. L.
,
2009
, “
Molecular Dynamics Simulations of Lattice Thermal Conductivity of Bismuth Telluride Using Two-Body Interatomic Potentials
,”
Phys. Rev. B
,
80
, p.
165203
.10.1103/PhysRevB.80.165203
9.
Richter
,
W.
,
Kohler
,
H.
, and
Becker
,
C. R.
,
1977
, “
Raman and Far-Infrared Investigation of Phonons in Rhombohedral V2-V3 Compounds—Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1)
,”
Phys. Status Solidi B
,
84
, pp.
619
628
.10.1002/pssb.2220840226
10.
Wolf
,
D.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
, and
Eggebrecht
,
J.
,
1999
, “
Exact Method for the Simulation of Coulombic Systems by Spherically Truncated, Pairwise r−1 Summation
,”
J. Chem. Phys.
,
110
, pp.
8254
8282
.10.1063/1.478738
11.
McGaughey
,
A. J. H.
, and
Jain
,
A.
,
2012
, “
Nanostructure Thermal Conductivity Prediction by Monte Carlo Sampling of Phonon Free Paths
,”
Appl. Phys. Lett.
,
100
, p.
061911
.10.1063/1.3683539
12.
Kaviany
,
M.
,
2008
,
Heat Transfer Physics, Vol. xxi
,
Cambridge University Press
,
Cambridge, UK
, p.
661
.
13.
Gale
,
J. D.
,
1997
, “
gulp: A Computer Program for the Symmetry-Adapted Simulation of Solids
,”
J. Chem. Soc., Faraday Trans.
,
93
, pp.
629
637
.10.1039/A606455H
14.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
, p.
094303
.10.1103/PhysRevB.69.094303
15.
Turney
,
J.
,
Landry
,
E.
,
McGaughey
,
A.
, and
Amon
,
C.
,
2009
, “
Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
, p.
064301
.10.1103/PhysRevB.79.064301
16.
Ladd
,
A. J. C.
, and
Moran
,
B.
,
1986
, “
Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics
,”
Phys. Rev. B
,
34
, pp.
5058
5064
.10.1103/PhysRevB.34.5058
17.
Larkin
,
J. M.
,
Massicotte
,
A. D.
,
Turney
,
J. E.
,
McGauphey
,
A. J. H.
, and
Amon
,
C. H.
, “Comparison and Evaluation of Spectral Energy Methods for Predicting Phonon Properties,”
J. of Comp. and Theoretical Nano.
(to be published).
18.
Klemens
,
P. G.
,
1951
, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures—Theoretical
,”
Proc. R. Soc. London, Ser. A
,
208
, pp.
108
133
.10.1098/rspa.1951.0147
19.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
, p.
144306
.10.1103/PhysRevB.65.144306
20.
Venkatasubramanian
,
R.
,
2000
, “
Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures
,”
Phys. Rev. B
,
61
, pp.
3091
3097
.10.1103/PhysRevB.61.3091
21.
Borca-Tasciuc
,
D. A.
,
Chen
,
G.
,
Prieto
,
A.
,
Martín-González
,
M. S.
,
Stacy
,
A.
,
Sands
,
T.
,
Ryan
,
M. A.
, and
Fleurial
,
J. P.
,
2004
, “
Thermal Properties of Electrodeposited Bismuth Telluride Nanowires Embedded in Amorphous Alumina
,”
Appl. Phys. Lett.
,
85
, pp.
6001
6003
.10.1063/1.1834991
22.
Mavrokefalos
,
A.
,
Moore
,
A. L.
,
Pettes
,
M. T.
,
Li
,
S.
,
Wang
,
W.
, and
Li
,
X.
,
2009
, “
Thermoelectric and Structural Characterizations of Individual Electrodeposited Bismuth Telluride Nanowires
,”
J. Appl. Phys.
,
105
, p.
104318
.10.1063/1.3133145
23.
Qiu
,
B.
,
Sun
,
L.
, and
Ruan
,
X. L.
,
2011
, “
Lattice Thermal Conductivity Reduction in Bi2Te3 Quantum Wires With Smooth and Rough Surfaces: A Molecular Dynamics Study
,”
Phys. Rev. B
,
83
, p.
035312
.10.1103/PhysRevB.83.035312
You do not currently have access to this content.