In this Technical Brief, we report on preliminary results of an experimental investigation of quenching of aqueous colloidal suspensions with graphene oxide nanosheets (GONs). Extremely dilute suspensions with only 0.0001% and 0.0002% (in mass fraction) of GONs were studied and their critical heat fluxes (CHF) during quenching were determined to increase markedly by 13.2% and 25.0%, respectively, as compared to that of pure water. Such efficient CHF enhancement was interpreted to be caused primarily by the improved wettability of the quenched surfaces, due to deposition of the fish-scale-shaped GONs resulting in self-assembly quasi-ordered microscale morphologies.

References

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.10.1063/1.1341218
2.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.10.1016/S0017-9310(02)00348-4
3.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
, pp.
3374
3376
.10.1063/1.1619206
4.
Taylor
,
R. A.
, and
Phelan
,
P. E.
,
2009
, “
Pool Boiling of Nanofluids: Comprehensive Review of Existing Data and Limited New Data
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5339
5347
.10.1016/j.ijheatmasstransfer.2009.06.040
5.
Kim
,
H.
,
2011
, “
Enhancement of Critical Heat Flux in Nucleate Boiling of Nanofluids: A State-of-Art Review
,”
Nanoscale Res. Lett.
,
6
, p.
415
.10.1186/1556-276X-6-415
6.
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2012
, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer
,
134
(2), p.
024001
.10.1115/1.4005065
7.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2006
, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
, p.
153107
.10.1063/1.2360892
8.
Kim
,
H. D.
, and
Kim
,
M. H.
,
2007
, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
, p.
014104
.10.1063/1.2754644
9.
Kim
,
H.
,
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2010
, “
On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,”
ASME J. Heat Transfer
,
132
(6), p.
061501
.10.1115/1.4000746
10.
Milanova
,
D.
, and
Kumar
,
R.
,
2008
, “
Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,”
ASME J. Heat Transfer
,
130
(4), p.
042401
.10.1115/1.2787020
11.
Cieslinski
,
J. T.
, and
Kaczmarczyk
,
T. Z.
,
2011
, “
Pool Boiling of Water-Al2O3 and Water-Cu Nanofluids on Horizontal Smooth Tubes
,”
Nanoscale Res. Lett.
,
6
, p.
220
.10.1186/1556-276X-6-220
12.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2012
, “
Transient Characteristics of Pool Boiling Heat Transfer in Nanofluids
,”
ASME J. Heat Transfer
,
134
(5), p.
051015
.10.1115/1.4005706
13.
Kedzierski
,
M. A.
,
2012
, “
Effect of Diamond Nanolubricant on R134a Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
134
(5), p.
051001
.10.1115/1.4005631
14.
Kedzierski
,
M. A.
,
2012
, “
R134a/Al2O3 Nanolubricant Mixture Pool Boiling on a Rectangular Finned Surface
,”
ASME J. Heat Transfer
,
134
(12), p.
121501
.10.1115/1.4007137
15.
Kumar
,
R.
, and
Milanova
,
D.
,
2009
, “
Effect of Surface Tension on Nanotube Nanofluids
,”
Appl. Phys. Lett.
,
94
, p.
073107
.10.1063/1.3085766
16.
Westwater
,
J. W.
,
Hwalek
,
J. J.
, and
Irving
,
M. E.
,
1986
, “
Suggested Standard Method for Obtaining Boiling Curves by Quenching
,”
Ind. Eng. Chem. Fundam.
,
25
, pp.
685
692
.10.1021/i100024a034
17.
Xue
,
H. S.
,
Fan
,
J. R.
,
Hong
,
R. H.
, and
Hu
,
Y. C.
,
2007
, “
Characteristic Boiling Curve of CNT Nanofluid as Determined by the Transient Calorimeter Technique
,”
Appl. Phys. Lett.
,
90
, p.
184107
.10.1063/1.2736653
18.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
, pp.
427
438
.10.1016/j.ijmultiphaseflow.2009.02.004
19.
Lotfi
,
H.
, and
Shafii
,
M. B.
,
2009
, “
Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,”
Int. J. Therm. Sci.
,
48
, pp.
2215
2220
.10.1016/j.ijthermalsci.2009.04.009
20.
Babu
,
K.
, and
Kumar
,
T. S. P.
,
2011
, “
Effect of CNT Concentration and Agitation on Surface Heat Flux During Quenching in CNT Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
, pp.
106
117
.10.1016/j.ijheatmasstransfer.2010.10.003
21.
Chun
,
S. Y.
,
Bang
,
I. C.
,
Choo
,
Y. J.
, and
Song
,
C. H.
,
2011
, “
Heat Transfer Characteristics of Si and SiC Nanofluids During a Rapid Quenching and Nanoparticles Deposition Effects
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1217
1223
.10.1016/j.ijheatmasstransfer.2010.10.029
22.
Bolukbasi
,
A.
, and
Ciloglu
,
D.
,
2011
, “
Pool Boiling Heat Transfer Characteristics of Vertical Cylinder Quenched by SiO2-Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
, pp.
1013
1021
.10.1016/j.ijthermalsci.2011.01.011
23.
Park
,
S. D.
,
Lee
,
S. W.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Lee
,
D. W.
,
2010
, “
Effects of Nanofluids Containing Graphene-Graphene-Oxide Nanosheets on Critical Heat Flux
,”
Appl. Phys. Lett.
,
97
, p.
023103
.10.1063/1.3459971
24.
Ghosh
,
S.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Pokatilov
,
E. P.
,
Nika
,
D. L.
,
Balandin
,
A. A.
,
Bao
,
W.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,”
Appl. Phys. Lett.
,
92
, p.
151911
.10.1063/1.2907977
25.
Chen
,
Z.
,
Jang
,
W.
,
Bao
,
W.
,
Lau
,
C. N.
, and
Dames
,
C.
,
2009
, “
Thermal Contact Resistance Between Graphene and Silicon Dioxide
,”
Appl. Phys. Lett.
,
95
, p.
161910
.10.1063/1.3245315
26.
Yu
,
W.
,
Xie
,
H.
, and
Chen
,
W.
,
2010
, “
Experimental Investigation on Thermal Conductivity of Nanofluids Containing Graphene Oxide Nanosheets
,”
J. Appl. Phys.
,
107
, p.
094317
.10.1063/1.3372733
27.
Baby
,
T. T.
, and
Ramaprabhu
,
S.
,
2010
, “
Investigation of Thermal and Electrical Conductivity of Graphene Based Nanofluids
,”
J. Appl. Phys.
,
108
, p.
124308
.10.1063/1.3516289
28.
Gupta
,
S. S.
,
Siva
,
V. M.
,
Krishnan
,
S.
,
Sreeprasad
,
T. S.
,
Singh
,
P. K.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2011
, “
Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets
,”
J. Appl. Phys.
,
110
, p.
084302
.10.1063/1.3650456
29.
Baby
,
T. T.
, and
Ramaprabhu
S.
,
2011
, “
Enhanced Convective Heat Transfer Using Graphene Dispersed Nanofluids
,”
Nanoscale Res. Lett.
,
6
, p.
289
.10.1186/1556-276X-6-289
30.
Kim
,
H.
,
Truong
,
B.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2011
, “
On the Effect of Surface Roughness Height, Wettability, and Nanoporosity on Leidenfrost Phenomena
,”
Appl. Phys. Lett.
,
98
, p.
083121
.10.1063/1.3560060
31.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(6), pp.
1071
1079
.10.1115/1.1409265
You do not currently have access to this content.