Laser cleaning is a promising surface preparation technique for applications in high value manufacturing industries. However, understanding the effects of laser processing parameters on various types of contaminants and substrates, is vital to achieve the required cleaning efficacy and quality. In this paper, a two-dimensional transient numerical simulation was carried out to study the material ablation characteristics and substrate thermal effects in laser cleaning of aerospace alloys. Element birth and death method was employed to track the contaminant removal on the surface of the material. The result shows that contaminant ablation increases with laser power and number of pulses. The finite element method (FEM) model is capable enough to predict the optimum number of pulses and laser power required to remove various contaminants. Based on the simulation results, the mechanism of the excimer laser cleaning is proposed. Thus, the use of numerical simulation can be faster and cheaper method of establishing the optimum laser cleaning window and reducing the number of experimental tests.

References

1.
Turner
,
M.
,
Crouse
,
P.
, and
Li
,
L.
,
2006
, “
Laser Cleaning of Large Area Aerospace Components
,”
Photon 06 Conference, Manchester
, pp.
4
7
.
2.
Kumar
,
A.
, and
Gupta
,
M. C.
,
2009
, “
Surface Preparation of Ti-3al-2.5v Alloy Tubes for Welding Using a Fiber Laser
,”
Opt. Lasers Eng.
,
47
(
11
), pp.
1259
1265
.10.1016/j.optlaseng.2009.05.011
3.
Kumar
,
A.
,
Sapp
,
M.
,
Vincelli
,
J.
, and
Gupta
,
M. C.
,
2010
, “
A Study on Laser Cleaning and Pulsed Gas Tungsten Arc Welding of Ti-3al-2.5v Alloy Tubes
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
64
71
.10.1016/j.jmatprotec.2009.08.017
4.
Turner
,
M. W.
,
Crouse
,
P. L.
, and
Li
,
L.
,
2006
, “
Comparison of Mechanisms and Effects of Nd:Yag and Co2 Laser Cleaning of Titanium Alloys
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4792
4797
.10.1016/j.apsusc.2005.06.050
5.
Turner
,
M. W.
,
Crouse
,
P. L.
, and
Li
,
L.
,
2007
, “
Comparative Interaction Mechanisms for Different Laser Systems With Selected Materials on Titanium Alloys
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
7992
7997
.10.1016/j.apsusc.2007.02.173
6.
Turner
,
M. W.
,
Crouse
,
P. L.
,
Li
,
L.
, and
Smith
,
A. J. E.
,
2006
, “
Investigation Into Co2 Laser Cleaning of Titanium Alloys for Gas-Turbine Component Manufacture
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4798
4802
.10.1016/j.apsusc.2005.06.061
7.
Whitehead
,
D. J.
,
Crouse
,
P. L.
,
Schmidt
,
M. J. J.
,
Li
,
L.
,
Turner
,
M. W.
, and
Smith
,
A. J. E.
,
2008
, “
Monitoring Laser Cleaning of Titanium Alloys by Probe Beam Reflection and Emission Spectroscopy
,”
Appl. Phys. A: Mater. Sci. Process.
,
93
(
1
), pp.
123
127
.10.1007/s00339-008-4643-7
8.
Chen
,
G. X.
,
Kwee
,
T. J.
,
Tan
,
K. P.
,
Choo
,
Y. S.
, and
Hong
,
M. H.
,
2010
, “
Laser Cleaning of Steel for Paint Removal
,”
Appl. Phys. A: Mater. Sci. Process.
,
101
(
2
), pp.
249
253
.10.1007/s00339-010-5811-0
9.
Garbacz
,
H.
,
Fortuna
,
E.
,
Marczak
,
J.
,
Strzelec
,
M.
,
Rycyk
,
A.
,
Koss
,
A.
,
Mróz
,
J.
,
Zatorska
,
A.
, and
Kurzydå, Owski
,
K. J.
,
2010
, “
Laser Cleaning of Copper Roofing Sheets Subjected to Long-Lasting Environmental Corrosion
,”
Appl. Phys. A: Mater. Sci. Process.
,
100
(
3
), pp.
693
701
.10.1007/s00339-010-5686-0
10.
Song
,
W. D.
,
Lu
,
Y.
,
Hong
,
M.
, and
Low
,
T.
,
1998
, “
Laser Cleaning of Magnetic Disks
,”
Proc. SPIE
,
3550
, p.
19
.10.1117/12.317933
11.
Zhou
,
X.
,
Imasaki
,
K.
,
Furukawa
,
H.
,
Umino
,
H.
,
Sakagishi
,
K.
,
Nakai
,
S.
, and
Yamanaka
,
C.
,
2001
, “
Simulation Study and Experiment on Laser-Ablation Surface Cleaning
,”
Opt. Laser Technol.
,
33
(
3
), pp.
189
194
.10.1016/S0030-3992(01)00016-0
12.
Furukawa
,
H.
,
Nishihara
,
K.
,
Yamanaka
,
C.
,
Nakai
,
S.
,
Imasaki
,
K.
,
Zhou
,
X.
,
Umino
,
H.
,
Sakagishi
,
K.
, and
Funahashi
,
S.
,
2000
, “
Laser Cleaning for Decontaminated Surfaces
,”
Advanced High-Power Lasers and Applications, International Society for Optics and Photonics
, pp.
128
136
.
13.
Zhang
,
J.
,
Wang
,
Y.
,
Cheng
,
P.
, and
Yao
,
Y. L.
,
2006
, “
Effect of Pulsing Parameters on Laser Ablative Cleaning of Copper Oxides
,”
J. Appl. Phys.
,
99
(
6
), p.
064902
.10.1063/1.2175467
14.
Tosto
,
S.
,
1999
, “
Modeling and Computer Simulation of Pulsed-Laser-Induced Ablation
,”
Appl. Phys. A: Mater. Sci. Process.
,
68
(
4
), pp.
439
446
.10.1007/s003390050920
15.
Oliveira
,
V.
, and
Vilar
,
R.
,
2007
, “
Finite Element Simulation of Pulsed Laser Ablation of Titanium Carbide
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
7810
7814
.10.1016/j.apsusc.2007.02.101
16.
Oliveira
,
V.
,
Colaço
,
R.
, and
Vilar
,
R.
,
2007
, “
Simulation of Krf Laser Ablation of Al2o3-Tic
,”
Appl. Surf. Sci.
,
253
(
18
), pp.
7585
7590
.10.1016/j.apsusc.2007.03.070
17.
Mullenix
,
N.
, and
Povitsky
,
A.
,
2006
, “
Comparison of 1-D and 2-D Coupled Models of Gas Dynamics and Heat Transfer for the Laser Ablation of Carbon
,”
J. Comput. Theor. Nanosci.
,
3
(
4
), pp.
513
524
.
18.
Zinovik
,
I.
, and
Povitsky
,
A.
,
2006
, “
Dynamics of Multiple Plumes in Laser Ablation: Modeling of the Shielding Effect
,”
J. Appl. Phys.
,
100
(
2
), pp.
024911
024913
.10.1063/1.2217108
19.
Sinha
,
S.
,
2010
, “
Nanosecond Laser Ablation of Thoria Fuel Pellets for Microstructural Study
,”
J. Nucl. Mater.
,
396
(
2–3
), pp.
257
263
.10.1016/j.jnucmat.2009.11.019
20.
Khalil
,
A. a. I.
, and
Sreenivasan
,
N.
,
2005
, “
Study of Experimental and Numerical Simulation of Laser Ablation in Stainless Steel
,”
Laser Phys. Lett.
,
2
(
9
), pp.
445
451
.10.1002/lapl.200510024
21.
Madenci
,
E.
, and
Guven
,
I.
,
2006
,
The Finite Element Method and Applications in Engineering Using Ansys
,
Springer-Verlag
,
New York
.
22.
Bogaerts
,
A.
, and
Chen
,
Z.
,
2005
, “
Effect of Laser Parameters on Laser Ablation and Laser-Induced Plasma Formation: A Numerical Modeling Investigation
,”
Spectrochim. Acta, Part B
,
60
(
9
), pp.
1280
1307
.10.1016/j.sab.2005.06.009
23.
Sobol
,
E. N.
,
1995
,
Phase Transformations and Ablation in Laser-Treated Solids
,
Wiley-Blackwell
, New York.
24.
Georgiou
,
S.
,
Zafiropulos
,
V.
,
Anglos
,
D.
,
Balas
,
C.
,
Tornari
,
V.
, and
Fotakis
,
C.
,
1998
, “
Excimer Laser Restoration of Painted Artworks: Procedures, Mechanisms and Effects
,”
Appl. Surf. Sci.
,
127–129
, pp.
738
745
.10.1016/S0169-4332(97)00734-4
25.
Wu
,
X.
,
Sacher
,
E.
, and
Meunier
,
M.
,
2000
, “
The Modeling of Excimer Laser Particle Removal From Hydrophilic Silicon Surfaces
,”
J. Appl. Phys.
,
87
(
8
), p.
3618
.10.1063/1.372391
26.
Weast
,
R. C.
,
Astle
,
M. J.
, and
Beyer
,
W. H.
,
1988
,
Crc Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
27.
Kanavin
,
A. P.
,
Smetanin
,
I. V.
,
Isakov
,
V. A.
,
Afanasiev
,
Y. V.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
,
Nolte
,
S.
,
Momma
,
C.
, and
Tünnermann
,
A.
,
1998
, “
Heat Transport in Metals Irradiated by Ultrashort Laser Pulses
,”
Phys. Rev. B
,
57
(
23
), pp.
14698
14703
.10.1103/PhysRevB.57.14698
28.
Chen
,
G.
, and
Xu
,
X.
,
2001
, “
Experimental and 3D Finite Element Studies of Cw Laser Forming of Thin Stainless Steel Sheets
,”
J. Manuf. Sci. Eng.
,
123
(
1
), pp.
66
73
.10.1115/1.1347036
29.
Paek
,
U. C.
, and
Kestenbaum
,
A.
,
1973
, “
Thermal Analysis of Thin-Film Micromachining With Lasers
,”
J. Appl. Phys.
,
44
(
5
), pp.
2260
2268
.10.1063/1.1662547
30.
Zaleckas
,
V. J.
, and
Koo
,
J. C.
,
1977
, “
Thin-Film Machining by Laser-Induced Explosion
,”
Appl. Phys. Lett.
,
31
(
9
), pp.
615
617
.10.1063/1.89801
31.
Veiko
,
V. P.
,
Metev
,
S. M.
,
Kaidanov
,
A. I.
,
Libenson
,
M. N.
, and
Jakovlev
,
E. B.
,
1980
, “
Two-Phase Mechanism of Laser-Induced Removal of Thin Absorbing Films. I. Theory
,”
J. Phys. D: Appl. Phys.
,
13
(
8
), pp.
1565
1570
.10.1088/0022-3727/13/8/026
32.
Miller
,
J. C.
,
1994
,
Laser Ablation: Principles and Applications
,
Springer
,
Berlin
.
33.
Vikram
,
C. S.
,
Pechersky
,
M. J.
,
Feng
,
C.
, and
Engelhaupt
,
D.
,
1996
, “
Residual-Stress Analysis by Local Laser Heating and Speckle-Correlation Interferometry
,”
Exp. Tech.
,
20
(
6
), pp.
27
30
.10.1111/j.1747-1567.1996.tb00476.x
34.
Cao
,
Y.
,
Wang
,
Y.
,
Dong
,
S.
,
Yang
,
Y.
,
Liang
,
Y.
, and
Sun
,
T.
,
2007
, “
Residual Stresses around Femtosecond Laser Ablated Grooves in Silicon Wafer Evaluated by Nanoindentation
,”
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies
,
6724
, p.
672417
.
35.
Cerri
,
E.
, and
Leo
,
P.
,
2011
, “
Mechanical Properties Evolution During Post-Welding-Heat Treatments of Double-Lap Friction Stir Welded Joints
,”
Mater. Des.
,
32
(
6
), pp.
3465
3475
.10.1016/j.matdes.2011.01.052
You do not currently have access to this content.