Assuming uniform particulate deposit layer, with deposition layer thickness in the range of 10–400 μm, on the ligaments of a metal foam heat sink, the effects of airborne particle deposition on the steady-state thermohydraulic performance of a metal foam heat sink are examined theoretically. Using a cubic cell model, changes in the foam internal structure, due to deposition, have been theoretically related to the increased pressure drop due to partial blockage of the pores. Our results suggest that the fouled to clean pressure drop ratio is only a function of the ligament to pore diameter ratio. Another interesting observation is that, compared to clean foams, the pressure drop can increase by orders of magnitude depending on the extent to which the pores are blocked. To examine the fouling effects on heat transfer from the foams, a thermal resistance network has been used. Moreover, the heat transfer from metal foams is more affected by fouling at higher fluid velocities. For example, when air is pushed through foams which their ligaments are uniformly covered by particles at 3 m/s, up to 15% decrease in the total heat transfer from the heated surface is predicted.

References

1.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.
2.
Ashby
,
M. F.
,
Evans
,
A.
,
Fleck
,
N.
,
Gibson
,
L.
,
Hutchinson
,
J.
, and
Wadley
,
H.
, 2000,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Boston
.
3.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
, 2011, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow
,”
Transp. Porous Media
,
86
(
3
), pp.
911
923
.
4.
Amori
,
K. E.
, and
Laibi
,
H. A.
, 2011, “
Experimental and Numerical Analysis of Electrical Metal Foam Heater
,”
Energy
,
36
(
7
), pp.
4524
4530
.
5.
Odabaee
,
M.
, and
Hooman
,
K.
, 2012, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Tube Bank
,”
Appl. Therm. Eng.
,
36
, pp.
456
463
.
6.
Zhou
,
D.
, and
Zhao
,
C. Y.
, 2011, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
970
977
.
7.
Tian
,
Y.
, and
Zhao
,
C. Y.
, 2011, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
.
8.
Ghidossi
,
R.
,
Bonnet
,
J. P.
,
Rebollar-Perez
,
G.
,
Carretier
,
E.
,
Ferrasse
,
J. H.
, and
Vicente
,
J.
, 2009, “
Separation of Particles From Hot Gases Using Metallic Foams
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3859
3868
.
9.
Odabaee
,
M.
, and
Hooman
,
K.
, 2011, “
Application of Metal Foams in Air-Cooled Condensers for Geothermal Power Plants: An Optimization Study
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
838
843
.
10.
Ejlali
,
A.
,
Ejlali
,
A.
,
Hooman
,
K.
, and
Gurgenci
,
H.
, 2009, “
Application of High Porosity Metal Foams as Air-Cooled Heat Exchangers to High Heat Load Removal Systems
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
674
679
.
11.
Ghosh
,
I.
, 2009, “
Heat Transfer Correlation for High-Porosity Open-Cell Foam
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1488
1494
.
12.
Dai
,
Z.
,
Nawaz
,
K.
,
Park
,
Y.
,
Chen
,
Q.
, and
Jacobi
,
A. M.
, 2012, “
A Comparison of Metal-Foam Heat Exchangers to Compact Multilouver Designs for Air-Side Heat Transfer Applications
,”
Heat Transfer Eng.
,
33
(
1
), pp.
21
30
.
13.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
14.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
15.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1325
1331
.
16.
Sadeghi
,
E.
,
Djilali
,
N.
, and
Bahrami
,
M.
, 2009, “
Thermal Conductivity and Thermal Contact Resistance of Metal Foams
,”
ASME Summer Heat Transfer Conference
, San Francisco.
17.
Tamayol
,
A.
, and
Hooman
,
K.
, 2011, “
Thermal Assessment of Forced Convection Metal Foam Heat Exchangers
,”
ASME J. Heat Transfer
,
133
,
111801
.
18.
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
, 2011, “
A Local Thermal Non-Equilibrium Analysis of Fully Developed Forced Convective Flow in a Tube Filled With a Porous Medium
,”
Transp. Porous Media
,
89
(
2
), pp.
237
249
.
19.
Hutter
,
H.
,
Buchi
,
D.
,
Zuber
,
V.
, and
Von Rohr
,
P. R.
, 2011, “
Heat Transfer in Metal Foams and Designed Porous Media
,”
Chem. Eng. Sci.
,
66
(
17
), pp.
3806
3814
.
20.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1998, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.
21.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.
22.
Albanakis
,
C.
,
Missirlis
,
D.
,
Michailidis
,
N.
,
Yakinthos
,
K.
,
Goulas
,
A.
,
Omar
,
H.
,
Tsipas
,
D.
, and
Granier
,
B.
, 2009, “
Experimental Analysis of the Pressure Drop and Heat Transfer Through Metal Foams Used as Volumetric Receivers Under Concentrated Solar Radiation
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
246
252
.
23.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2003, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
Comp. Pack. Technol.
,
26
(
1
), pp.
262
267
.
24.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
, 2010, “
Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation
,”
ASME J. Heat Transfer
,
132
(
12
),
121901
.
25.
Dukhan
,
N.
,
Quinones-Ramos
,
P. D.
,
Cruz-Ruiz
,
E.
,
Velez-Reyes
,
M.
, and
Scott
,
E. P.
, 2005, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10-ppi Metal Foam
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5112
5120
.
26.
Dukhan
,
N.
, 2006, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.
27.
Dukhan
,
N.
,
Picon-Feliciano
,
P.
, and
Alvarez-Hernandez
,
A. R.
, 2006, “
Air Flow Through Compressed and Uncompressed Aluminum Foam: Measurements and Correlations
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1004
1012
.
28.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2002, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.
29.
Bonnet
,
J. P.
,
Topin
,
F.
, and
Tadrist
,
L.
, 2008, “
Flow Laws in Metal Foams: Compressibility and Pore Size Effects
,”
Transp. Porous Media
,
73
(
2
), pp.
233
254
.
30.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
, 2004, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
193
199
.
31.
Khayargoli
,
P.
,
Loya
,
V.
,
Lefebvre
,
L. P.
, and
Medraj
,
M.
, 2004, “
The Impact of Microstructure on the Permeability of Metal Foams
,”
CSME Forum
, pp.
220
228
.
32.
Onstad
,
A. J.
,
Elkins
,
C. J.
,
Medina
,
F.
,
Wicker
,
R. B.
, and
Eaton
,
J. K.
, 2011, “
Full-Field Measurements of Flow Through a Scaled Metal Foam Replica
,”
Exp. Fluids
,
50
(
6
), pp.
1571
1585
.
33.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.
34.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2011, “
In-Plane Gas Permeability of Proton Exchange Membrane Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
,
196
(
7
), pp.
3559
3564
.
35.
De Jaeger
,
P.
,
T’Joen
,
C.
,
Huisseune
,
H.
,
Arneel
,
B.
, and
De Paepe
,
M.
, 2011, “
An Experimentally Validated and Parameterized Periodic Unit-Cell Reconstruction of Open-Cell Foams
,”
J. Appl. Phys.
,
109
(
10
),
103519
.
36.
T’Joen
,
C.
,
Huisseune
,
H.
,
Caniere
,
H.
,
Steeman
,
H. J.
,
Willockx
,
A.
, and
De Paepe
,
M.
, 2010, “
Interaction Between Mean Flow and Thermo-Hydraulic Behaviour in Inclined Louvered Fins
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
826
837
.
37.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
38.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2011, “
Transverse Permeability of Fibrous Porous Media
,”
Phys. Rev. E
,
84
,
046314
.
39.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
40.
Cavallini
,
A.
,
Mancin
,
S.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2010, “
Air Flow in Aluminum Foam: Heat Transfer and Pressure Drops Measurements
,”
Exp. Heat Transfer
,
23
(
1
), pp.
94
105
.
41.
Malayeri
,
M. R.
,
Zornek
,
T.
,
Balestrino
,
S.
,
Warey
,
A.
, and
Szymkowicz
,
P. G.
, 2011, “
Deposition of Nano-Sized Soot Particles in Various EGR Coolers Under Thermophoretic and Isothermal Conditions
,”
International Conference on Heat Exchanger Fouling and Cleaning-2011, Crete
, Greece, pp.
74
81
. Available at: http://heatexchanger-fouling.com/proceedings2011.htm
42.
Odabaee
,
M.
,
DePaepe
,
M.
,
DeJaeger
,
P.
,
T’Joen
,
C.
, and
Hooman
,
K.
, 2012, “
Particle Deposition Effects on Heat Transfer From a Metal Foam-Wrapped Tube Bundle
,”
Int. J. Numer. Methods Heat Fluid Flow
(submitted).
You do not currently have access to this content.