There have been growing interests in selective control of thermal emission by using micro/nanostructures. The present study describes direct measurements of infrared thermal emission at elevated temperatures of an asymmetric Fabry–Perot resonator at variable angles for each polarization. The multilayered structure mainly contains a SiO2 optical cavity sandwiched between a thick (opaque) Au film and a thin Au film. Metallic adhesive and diffusion-barrier layers were deposited on a Si substrate before depositing the thick Au film. A dielectric protection layer was deposited atop the thin Au film to prevent oxidation at high temperatures. A SiC wafer was used as the reference to test the emittance measurement facility, which includes a heated sample holder, a blackbody source, mirror assembly, a polarizer, and a Fourier-transform infrared spectrometer with different detectors. The measured emittance spectra of the Fabry–Perot structure exhibit peak broadening and shifting as temperature increases; the mechanisms are elucidated by comparison with theoretical modeling.

References

1.
Zhang
,
Z. M.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
2.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
, 1986, “
Organ Pipe Radiant Modes of Periodic Micromachined Silicon Surfaces
,”
Nature
,
324
, pp.
549
551
.
3.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Mainguy
,
S.
, and
Chen
,
Y.
, 2002, “
Coherent Emission of Light by Thermal Sources
,”
Nature
,
416
, pp.
61
64
.
4.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Extraordinary Coherent Thermal Emission from SiC Due to Coupled Resonant Cavities
,”
ASME Trans. J. Heat Transfer
,
130
, p.
112401
.
5.
Lee
,
B. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
, 2008, “
Coherent Thermal Emission by Excitation of Magnetic Polaritons Between Periodic Strips and a Metallic Film
,”
Opt. Express
,
16
, pp.
11328
11336
.
6.
Lee
,
B. J.
,
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2005, “
Coherent Thermal Emission from One-dimensional Photonic Crystals
,”
Appl. Phys. Lett.
,
87
, p.
071904
.
7.
Lee
,
B. J.
,
Chen
,
Y. B.
, and
Zhang
,
Z. M.
, 2008, “
Surface Waves Between Metallic Films and Truncated Photonic Crystals Observed With Reflectance Spectroscopy
,”
Opt. Lett.
,
33
, pp.
204
206
.
8.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2006, “
Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics
,”
J. Appl. Phys.
,
100
, p.
063529
.
9.
Wang
,
L. P.
,
Lee
,
B. J.
,
Wang
,
X. J.
, and
Zhang
,
Z. M.
, 2009, “
Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Perot Resonance Cavities
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3024
3031
.
10.
Vaughan
,
J. M.
, 1989,
The Fabry-Perot Interferometer
,
Adam Hilger
,
Philadelphia, PA
.
11.
Hardley
,
L. N.
, and
Dennison
,
D. M.
, 1947, “
Reflection and Transmission Interference Filters
,”
J. Opt. Soc. Am.
,
37
, pp.
451
453
.
12.
Laroche
,
M.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
, 2005, “
Tailoring Silicon Radiative Properties
,”
Opt. Commun.
,
250
, pp.
316
320
.
13.
Wang
,
L. P.
,
Basu
,
S.
, and
Zhang
,
Z. M.
, 2011, “
Direct and Indirect Methods for Calculating Thermal Emission from Layered Structures With Nonuniform Temperatures
,”
ASME Trans. J. Heat Transfer
,
133
, p.
072701
.
14.
Deblase
,
F. J.
, and
Compton
,
S.
, 1991, “
Infrared Emission Spectroscopy: A Theoretical and Experimental Review
,”
Appl. Spectrosc.
,
45
, pp.
611
618
.
15.
Markham
,
J. R.
,
Kinsella
,
K.
,
Carangelo
,
R. M.
,
Brouillette
,
C. R.
,
Carangelo
,
M. D.
,
Best
,
P. E.
, and
Solomon
,
P. R.
, 1993, “
Bench Top Fourier Transform Infrared Based Instrument for Simultaneously Measuring Surface Spectral Emittance and Temperature
,”
Rev. Sci. Instrum.
,
64
, pp.
2515
2522
.
16.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Carminati
,
R.
,
Greffet
,
J. J.
, and
Chen
,
Y.
, 2004, “
Coherent Spontaneous Emission of Light by Thermal Sources
,”
Phys. Rev. B
,
69
, p.
155412
.
17.
Del Campo
,
L.
,
Perez-Saez
,
R. B.
,
Esquisabel
,
X.
,
Fernandez
,
I.
, and
Tello
,
M. J.
, 2006, “
New Experimental Device for Infrared Spectral Directional Emissivity Measurements in a Controlled Environment
,”
Rev. Sci. Instrum.
,
77
, p.
113111
.
18.
Cagran
,
C. P.
,
Hanssen
,
L. M.
,
Noorma
,
M.
,
Gura
,
A. V.
, and
Mekhontsev
,
S. N.
, 2007, “
Temperature-Resolved Infrared Spectral Emissivity of SiC and Pt-10Rh for Temperatures up to 900 ºC
,”
Int. J. Thermophys.
,
28
, pp.
581
597
.
19.
Monte
,
C.
,
Gutschwager
,
B.
,
Morozova
,
S. P.
, and
Hollandt
,
J.
, 2009, “
Radiation Thermometry and Emissivity Measurements Under Vacuum at the PTB
,”
Int. J. Thermophys.
,
30
, pp.
203
219
.
20.
Flik
,
M. I.
, and
Zhang
,
Z. M.
, 1992, “
Influence of Nonequivalent Detector Responsivity on FT-IR Photometric Accuracy
,”
J. Quant. Spectrosc. Radiat. Transf.
,
47
, pp.
293
303
.
21.
Zhang
,
Z. M.
,
Zhu
,
C. J.
, and
Hanssen
,
L. M.
, 1997, “
Absolute Detector Calibration Applied to Nonlinearity Error Correction in FT-IR Measurements
,”
Appl. Spectrosc.
,
51
, pp.
576
579
.
22.
Palik
,
E. D.
, ed., 1998,
Handbook of Optical Constants of Solids
, Vols.
I and II
,
Academic Press
,
San Diego
.
23.
Zhang
,
Z. M.
,
Hanssen
,
L. M.
,
Datla
,
R. U.
, and
Drew
,
H. D.
, 1996, “
An Apparatus for Infrared Transmittance and Reflectance Measurements at Cryogenic Temperatures
,”
Int. J. Thermophys.
,
17
, pp.
1441
1454
.
24.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
25.
Hopkins
,
P. E.
,
Norris
,
P. M.
, and
Stevens
,
R. J.
, 2008, “
Influence of Inelastic Scattering at Metal-Dielectric Interfaces
,”
ASME Trans. J. Heat Transfer
,
130
, p.
022401
.
26.
Yu
,
J.
,
Yee
,
A. L.
, and
Schwall
,
R. E.
, 1991, “
Thermal Conductance of Cu/Cu and Cu/Si Interfaces from 85 K to 300 K
,”
Cryogenics
,
32
, pp.
610
615
.
27.
Spitzer
,
W. G.
,
Kleinman
,
D. A.
,
Frosch
,
C. J.
, and
Walsh
,
D. J.
, 1960, “
Infra-red Properties of Silicon Carbide
,”
Silicon Carbide, A High Temperature Semiconductor
,
J. R.
O’Connor
, and
J.
Smiltens
, eds.,
Pergamon
,
New York
, pp.
347
365
.
28.
Zhang
,
Z. M.
, and
Lee
,
B. J.
, 2009, “
Theory of Thermal Radiation and Radiative Properties
,”
Radiometric Temperature Measurements: I. Fundamentals
,
Z. M.
Zhang
,
B. K.
Tsai
, and
G.
Machin
, eds.,
Academic Press (an Imprint of Elsevier
),
Amsterdam
, Chap. 3, pp.
74
132
.
29.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor & Francis
,
New York
.
30.
Lee
,
B. J.
,
Zhang
,
Z. M.
,
Early
,
E. A.
,
DeWitt
,
D. P.
, and
Tsai
,
B. K.
, 2005, “
Modeling Radiative Properties of Silicon With Coatings and Comparison With Reflectance Measurements
,”
J. Thermophys. Heat Transfer
,
19
, pp.
558
569
.
31.
Aspnes
,
D. E.
,
Kinsbron
,
E.
, and
Bacon
,
D. D.
, 1980, “
Optical-Properties of Au—Sample Effects
,”
Phys. Rev. B
,
21
, pp.
3290
3299
.
32.
Johnson
,
P. B.
, and
Christy
,
R. W.
, 1972, “
Optical-Constants of Noble-Metals
,”
Phys. Rev. B
,
6
, pp.
4370
4379
.
33.
Flik
,
M. I.
,
Zhang
,
Z. M.
,
Goodson
,
K. E.
,
Siegal
,
M. P.
, and
Phillips
,
J. M.
, 1992, “
Electron Scattering Rate in Epitaxial YBa2Cu3O7 Superconducting Films
,”
Phys. Rev. B
,
46
, pp.
5606
5614
.
34.
Lee
,
B. J.
,
Khuu
,
V. P.
, and
Zhang
,
Z. M.
, 2005, “
Partially Coherent Spectral Radiative Properties of Dielectric Thin Films With Rough Surfaces
,”
J. Thermophys. Heat Transfer
,
19
, pp.
360
366
.
35.
Basu
,
S.
,
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
, 2007, “
Microscale Radiation in Thermophotovoltaic Devices—A Review
,”
Int. J. Energy Res.
,
31
, pp.
689
716
.
You do not currently have access to this content.