The molten pool shape and thermocapillary convection during melting or welding of metals or alloys are self-consistently predicted from scale analysis. Determination of the molten pool shape and transport variables is crucial due to their close relationship with the strength and properties of the fusion zone. In this work, surface tension coefficient is considered to be negative, indicating an outward surface flow, whereas high Prandtl number represents a reduced thickness of the thermal boundary layer compared to that of the momentum boundary layer. Since the Marangoni number is usually very high, the domain of scaling is divided into hot, intermediate and cold corner regions, boundary layers along the solid–liquid interface and ahead of the melting front. The results show that the width and depth of the pool, peak and secondary surface velocities, and maximum temperatures in the hot and cold corner regions can be explicitly and separately determined as functions of working variables, or Marangoni, Prandtl, Peclet, Stefan, and beam power numbers. The scaled results agree with numerical results and available experimental data.

References

1.
Kanouff
,
M.
, and
Greif
,
R.
, 1994, “
Oscillations in Thermocapillary Convection in a Square Cavity
,”
Int. J. Heat Mass Transfer
,
37
, pp.
885
892
.
2.
Voth
,
T. E.
,
Liu
,
A.
, and
Bergman
,
T. L.
, 1992, “
Thermocapillary Convection During Solid-Liquid Phase Change
,”
Trans. ASME J. Heat Transfer
,
114
, pp.
1068
1070
.
3.
Kou
,
S.
, and
Wang
,
Y. H.
, 1986, ”
Weld Pool Convection and Its Effect
,”
Weld. J.
,
65
, pp.
63
-s–70-
s
.
4.
Zacharia
,
T.
,
David
,
S. A.
,
Vitek
,
J. M.
, and
DebRoy
,
T.
, 1989, “
Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel, Part I—Theoretical Analysis
,”
Weld. J.
,
68
, pp.
499
-s–509-
s
.
5.
Limmaneevichitr
,
C.
, and
Kou
,
S.
, 2000, “
Experiments to Simulate Effect of Marangoni Convection on Weld Pool Shape
,”
Weld. J.
,
79
, pp.
231
-s–237-
s
.
6.
Robert
,
A.
, and
DebRoy
,
T.
, 2001, “
Geometry of Laser Spot Welds From Dimensionless Numbers
,”
Metall. Mater. Trans. B
,
32
, pp.
941
947
.
7.
Bejan
,
A.
1984,
Convection Heat Transfer
,
Wiley
,
New York.
8.
Ostrach
,
S.
, 1982, “
Low-Gravity Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
313
345
.
9.
Wei
,
P. S.
, 2011, “
Thermal Science of Weld Bead Defects: A Review
,”
Trans. ASME J. Heat Transfer
,
133
, p.
031005
.
10.
Wei
,
P. S.
,
Chuang
,
K. C.
,
DebRoy
,
T.
, and
Ku
,
J. S.
, 2011, “
Scaling of Spiking and Humping in Keyhole Welding
,”
J. Phys. D: Appl. Phys.
,
44
, p.
245501
.
11.
Cowley
,
S. J.
, and
Davis
,
S. H.
, 1983, “
Viscous Thermocapillary Convection at High Marangoni Number
,”
J. Fluid Mech.
,
135
, pp.
175
188
.
12.
Zebib
,
A.
,
Homsy
,
G. M.
, and
Meiburg
,
E.
, 1985, “
High Marangoni Number Convection in a Square Cavity
,”
Phys. Fluids
,
28
, pp.
3467
3476
.
13.
Chen
,
M. M.
, 1987, “
Thermocapillary Convection in Materials Processing
,”
Interdisciplinary Issues in Materials Processing and Manufacturing
,
S. K.
Samanta
,
R.
Komanduri
,
R.
McMeeking
,
M. M.
Chen
, and
A.
Tseng
, eds.,
ASME
,
New York
, pp.
541
558
.
14.
Chakraborty
,
N.
, and
Chakraborty
,
S.
, 2007, “
Thermal Transport Regimes and Generalized Regime Diagram for High Energy Surface Melting Processes
,”
Metall. Mater. Trans. B
,
38
, pp.
143
147
.
15.
Chan
,
C. L.
,
Chen
,
M. M.
, and
Mazumder
,
J.
, 1988, “
Asymptotic Solution for Thermocapillary Flow at High and Low Prandtl Numbers Due to Concentrated Surface Heating
,”
Trans. ASME J. Heat Transfer
,
110
, pp.
140
146
.
16.
Kamotani
,
Y.
,
Chang
,
A.
, and
Ostrach
,
S.
, 1996, “
Effects of Heating Mode on Steady Axisymmetric Thermocapillary Flows in Microgravity
,”
Trans. ASME J. Heat Transfer
,
118
, pp.
191
197
.
17.
Kamotani
,
Y.
, and
Ostrach
,
S.
, 1998, “
Theoretical Analysis of Thermocapillary Flow in Cylindrical Columns of High Prandtl Number Fluids
,”
Trans. ASME J. Heat Transfer
,
120
, pp.
758
764
.
18.
Chung
,
F. K.
, and
Wei
,
P. S.
, 1999, “
Mass, Momentum, and Energy Transport in a Molten Pool When Welding Dissimilar Metals
,”
Trans. ASME J. Heat Transfer
,
121
, pp.
451
461
.
19.
Sen
,
A. K.
, and
Davis
,
S. H.
, 1982, “
Steady Thermocapillary Flows in Two-Dimensional Slots
,”
J. Fluid Mech.
,
121
, pp.
163
186
.
20.
Wei
,
P. S.
,
Ting
,
C. N.
,
Yeh
,
J. S.
,
DebRoy
,
T.
,
Chung
,
F. K.
, and
Yan
,
G. H.
, 2009, “
Origin of Wavy Weld Boundary
,”
J. Appl. Phys.
,
105
, p.
053508
.
21.
Wei
,
P. S.
,
Lin
,
C. L.
,
Liu
,
H. J.
, and
Ting
,
C. N.
, “
Transient Thermocapillary Convection in Molten or Weld Pool
,”
ASME J. Manuf. Sci. Eng.
(to be published).
22.
Wei
,
P. S.
,
Kuo
,
Y. K.
, and
Ku
,
J. S.
, 2000, “
Fusion Zone Shapes in Electron-Beam Welding Dissimilar Metals
,”
Trans. ASME J. Heat Transfer
,
122
, pp.
626
631
.
23.
Fuerschbach
,
P. W.
, 1996, “
Measurement and Prediction of Energy Transfer Efficiency in Laser Beam Welding
,”
Weld. J.
,
75
, pp.
24
-s–34-
s
.
24.
Taniguchi
,
N.
,
Ikeda
,
M.
,
Miyamoto
,
I.
, and
Miyazaki
,
T.
, 1989,
Energy-Beam Processing of Materials
,
Clarendon Press
,
Oxford.
25.
Hashimoto
,
T.
, and
Matsuda
,
F.
, 1965, “
Effect of Welding Variables and Materials Upon Bead Shape in Electron-Beam Welding
,”
Trans. National Research Institute for Metals
,
7
, pp.
22
35
.
26.
Christensen
,
N.
,
Davies
,
V. de L.
, and
Gjermundsen
,
K.
, 1965, “
Distribution of Temperatures in Arc Welding
,”
Br. Weld. J.
,
12
, pp.
54
75
.
You do not currently have access to this content.