This paper presents a theoretical and experimental study on gaseous conductivity of silica aerogel and composite insulation materials. First, the insulation material samples (including silica aerogel, xonotlite-type calcium silicate, xonotlite-aerogel composite, and ceramic fiber-aerogel composite) were prepared. Next, the gaseous conductivities of the prepared samples were measured from 0.045 Pa to atmospheric pressure using the transient hot-strip (THS) method. The gaseous conductivity expressions obtained based on the kinetic theory were then compared with the experimental results. It is shown that the gaseous conductivity of both xonotlite-type calcium silicate and silica aerogel decreases significantly with decreasing pressure. The gaseous conductivities of xonotlite-type calcium silicate and silica aerogel reach zero at about 100 Pa and 104 Pa, respectively. The theoretical gaseous conductivity expressions match well with the experimental results of xonotlite-type calcium silicate and silica aerogel but not with the experimental results for the composite insulation materials. This mismatch indicates that the aerogel does not totally fill the original interspace of the xonotlite-type calcium silicate and ceramic fiber in the two kinds of composite insulation materials.

References

1.
Douglas
,
M. S.
,
Alok
,
M.
, and
Ulrich
,
B.
, 1998, “
Aerogel-Based Thermal Insulation
,”
J. Non-Cryst. Solids
,
225
, pp.
254
259
.
2.
Bardy
,
E. R.
,
Mollendorf
,
J. C.
, and
Pendergast
,
D. R.
, 2007, “
Thermal Conductivity and Compressive Strain of Aerogel Insulation Blankets Under Applied Hydrostatic Pressure
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
232
235
.
3.
Smith
,
B.
,
Romero
,
D.
,
Agonafer
,
D.
,
Gu
,
J.
, and
Amon
,
C. H.
, 2005, “
Aerogel for Microsystems Thermal Insulation: System Design and Process Development
,”
Proceedings of ASME Summer Heat Transfer Conference
,
4
, pp.
753
762
.
4.
Fesmire
,
J. E.
, and
Sass
,
J. P.
, 2008, “
Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks
,”
Cryogenics
,
48
(
5–6
), pp.
223
231
.
5.
Reim
,
M.
,
Körner
,
W.
,
Manara
,
J.
,
Korder
,
S.
,
Arduini-Schuster
,
M.
,
Ebert
,
H. P.
, and
Fricke
,
J.
, 2005, “
Silica Aerogel Granulate Material for Thermal Insulation and Daylighting
,”
Solar Energy
,
79
(
2
), pp.
131
139
.
6.
Cao
,
J. X.
,
Zhang
,
Y.
, and
Zeng
,
L. K.
, 2007, “
Preparation of Nano-porous Super Thermal Insulation Material Compounded with Xonotlite-SiO2–Aerogel and Characterization of the Pore Structure
,”
Key Eng. Mater.
,
336–338
(
1
), pp.
1505
1508
.
7.
Cheng
,
S. X.
, 2005, “
Experiment Preparation of a Super Insulator Calcium Silicate Composite with Nanometer Pore
,” Ph.D. thesis, University of Science and Technology Beijing, Beijing.
8.
Yang
,
H. L.
,
Ni
,
W.
,
Chen
,
D. P.
,
Liang
,
T.
,
Xu
,
G. Q.
,
Xiao
,
J. Y.
,
Yang
,
X. G.
, and
Wang
,
H. X.
, 2008, “
Effect of Preparation Condition on the Thermal Conductivity of Xonotlite-Silica Aerogel Nanoporous Super Insulation Materials
,”
J. Univ. Sci. Technol. Beijing
,
30
(
1
), pp.
57
62
.
9.
Ni
,
W.
,
Cao
,
Z. Y.
, and
Shu
,
X. L.
, 1996, “
Quality Effect of Xonotlite-Type Calcium Silicate Thermal Insulation Materials by C2S
,”
J. Univ. Sci. Technol. Beijing
,
18
(
6
), pp.
495
500
.
10.
Zheng
,
Q. J.
, and
Wang
,
W.
, 2000, “
Calcium Silicate Based High Efficiency Thermal Insulation
,”
Br. Ceram. Trans.
,
99
(
4
), pp.
187
190
.
11.
Hrubesh
,
L. W.
, and
Pekala
,
R. W.
, 1994, “
Thermal Properties of Organic and Inorganic Aerogels
,”
J. Mater. Res.
,
9
(
3
), pp.
731
738
.
12.
Burns
,
P. J.
, and
Tien
,
C. L.
, 1979, “
Natural Convection in Porous Media Bounded by Concentric Spheres and Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
22
(
6
), pp.
929
939
.
13.
Wei
,
G. S.
,
Zhang
,
X. X.
, and
Yu
,
F.
, 2007, “
Thermal Conductivity of Xonotlite Insulation Material
,”
Int. J. Thermophys.
,
28
(
5
), pp.
1718
1729
.
14.
Zeng
,
S. Q.
,
Hunt
,
A.
, and
Greif
,
R.
, 1995, “
Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
1055
1058
.
15.
Zhang
,
X. X.
,
Wei
,
G. S.
, and
Yu
,
F.
, 2005, “
Influence of Some Parameters on Effective Thermal Conductivity of Nano-Porous Aerogel Super Insulator
,”
Proceedings of ASME Summer Heat Transfer Conference
, Vol.
1
, ASME New York, pp.
7
12
.
16.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
.
17.
Burmeister
,
L. C.
, 1983,
Convective Heat Transfer
,
Wiley
,
New York
.
18.
Lu
,
X.
,
Ardunini-Schuster
,
M. C.
,
Kuhn
,
J.
,
Nilsson
,
O.
,
Fricke
,
J.
, and
Pekala
,
R. W.
, 1992, “
Thermal Conductivity of Monolithic Organic Aerogels
,”
Science
,
225
(
5047
), pp.
971
972
.
19.
Lee
,
O. J.
,
Lee
,
K. H.
,
Tae
,
J. Y.
,
Sun
,
J. K.
, and
Yoo
,
K. P.
, 2002, “
Determination of Mesopore Size of Aerogels From Thermal Conductivity Measurements
,”
J. Non-Cryst. Solids
,
298
(
2–3
), pp.
287
292
.
20.
Lu
,
X.
,
Caps
,
R.
,
Fricke
,
J.
,
Alviso
,
C. T.
, and
Pekala
,
R. W.
, 1995, “
Correlation between Structure and Thermal Conductivity of Organic Aerogels
,”
J. Non-Cryst. Solids
,
188
(
3
), pp.
226
234
.
21.
Zeng
,
S. Q.
,
Hunt
,
A. J.
, and
Cao
,
W.
, 1994, “
Pore Size Distribution and Apparent Gas Thermal Conductivity of Silica Aerogel
,”
ASME J. Heat Transfer
,
116
(
3
), pp.
756
759
.
22.
Zeng
,
S. Q.
,
Hunt
,
A. J.
, and
Greif
,
R.
, 1995, “
Mean Free Path and Apparent Thermal Conductivity of a Gas in a Porous Medium
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
758
761
.
23.
Zeng
,
S. Q.
,
Hunt
,
A. J.
, and
Greif
,
R.
, 1995, “
Transport Properties of Gas in Silica Aerogel
,”
J. Non-Cryst. Solids
,
186
(
2
), pp.
264
270
.
24.
Yang
,
H. L.
,
Ni
,
W.
,
Xiao
,
J. Y.
,
Zheng
,
J.
, and
Zhao
,
X.
, 2006, “
Preparation and Characterization of Monolithic Super Thermal Insulation With Nanoporous Structures
,”
New Chem. Mater.
,
34
(
9
), pp.
65
71
.
25.
Wieslawa
,
N. W.
, 1999, “
Effect of Na and Al on the Phase Composition and Morphology of Autoclaved Calcium Silicate Hydrates
,”
Cem. Concr. Res.
,
29
(
11
), pp.
1759
1767
.
26.
Li
,
M. Q.
, 2002, “
Hydrothermal Synthesis of Micro-porous Spherical Particles of Calcium Silicate
,”
J. Chin. Ceram. Soc.
,
30
(Suppl.), pp.
64
67
.
27.
Liu
,
Y. S.
, 2007, “
Heat Transfer Mechanism and Thermal Design of Nanoporous Insulating Materials
,” Ph.D. thesis, University of Science and Technology Beijing, Beijing.
28.
Yang
,
H. L.
,
Ni
,
W.
,
Sun
,
C. C.
,
Hu
,
Z. J.
, and
Chen
,
S. X.
, 2006, “
Development of Xonotlite-Silica Aerogel Nanoporous Super Insulation Sheets
,”
Aerosp. Mater. Technol.
,
2
(
1
), pp.
18
22
.
29.
Yang
,
H. L.
,
Ni
,
W.
,
Chen
,
D. P.
,
Xu
,
G. Q.
,
Liang
,
T.
, and
Xu
,
L.
, 2008, “
Mechanism of Low Thermal Conductivity of Xonotlite-Silica Aerogel Nanoporous Super Insulation Material
,”
J. Univ. Sci. Technol. Beijing
,
15
(
5
), pp.
649
653
.
30.
Gustafsson
,
S. E.
,
Karawack
,
E.
, and
Khan
,
M. N.
, 1979, “
Transient Hot-Strip Method for Simultaneously Measuring Thermal Conductivity and Thermal Diffusivity of Solids and Fluids
,”
J. Phys. D: Appl. Phys.
,
12
(
9
), pp.
1411
1421
.
31.
Hammerschmidt
,
U.
, and
Sabuga
,
W.
, 2000, “
Transient Hot Strip (THS) Method: Uncertainty Assessment
,”
Int. J. Thermophys.
,
21
(
1
), pp.
217
248
.
32.
Gustavsson
,
M.
,
Wang
,
H.
,
Trejo
,
R. M.
,
Lara-Curzio
,
E.
,
Dinwiddie
,
R. B.
, and
Gustafsson
,
S. E.
, 2006, “
On the Use of the Transient Hot-Strip Method for Measuring the Thermal Conductivity of High-Conducting Thin Bars
,”
Int. J. Thermophys.
,
27
(
6
), pp.
1816
1825
.
33.
Gustavsson
,
M.
,
Nagai
,
H.
, and
Okutani
,
T.
, 2007, “
Characterization of Anisotropic and Irregularly-Shaped Materials by High-Sensitive Thermal Conductivity Measurements
,”
Solid State Phenom.
,
124–126
(
2
), pp.
1641
1644
.
34.
Wei
,
G. S.
,
Du
,
X. Z.
,
Zhang
,
X. X.
, and
Yu
,
F.
, 2009, “
Theoretical Study on Transient Hot-Strip Method by Numerical Analysis
,”
Proceedings of ASME Summer Heat Transfer Conference
, July 19–23,
San Francisco, CA
.
35.
Li
,
M. Q.
,
Chen
,
Y. F.
,
Xia
,
S. Q.
,
Li
,
J. H.
, and
Liang
,
H. X.
, 2000, “
Microstructure and Processing of Ultra-Light Calcium Silicate Insulation Material
,”
J. Chin. Ceram. Soc.
,
28
(
5
), pp.
401
406
.
36.
Zhang
,
H. L.
,
Wang
,
J.
,
Deng
,
Z. S.
, and
Zhou
,
B.
, 1999, “
Gas Thermal Conduction of Nano-porous Silica Aerogels
,”
J. Tongji Univ.
,
27
(
5
), pp.
541
544
.
37.
Biesmans
,
G. D.
,
Randall
,
D.
,
Francais
,
E.
, and
Perrut
,
M.
, 1998, “
Polyurethane-Based Organic Aerogels’ Thermal Performance
,”
J. Non-Cryst. Solids
,
225
, pp.
36
40
.
38.
Pohl
,
P. L.
,
Faulon
,
J. L.
, and
Smith
,
D. M.
, 1995, “
Molecular Dynamics Computer Simulations of Silica Aerogels
,”
J. Non-Cryst. Solids
,
186
, pp.
349
355
.
39.
Wei
,
G. S.
, 2006, “
A Study on Thermophysical Properties of Nano-Porous Super Insulator
,” Ph.D. thesis, University of Science and Technology Beijing, Beijing.
You do not currently have access to this content.