In many industrial processes or natural phenomena, coupled heat and mass transfer and fluid flow take place in configurations combining a clear fluid and a porous medium. Since the pioneering work by Beavers and Joseph (1967), the modeling of such systems has been a controversial issue, essentially due to the description of the interface between the fluid and the porous domains. The validity of the so-called one-domain approach—more intuitive and numerically simpler to implement—compared to a two-domain description where the interface is explicitly accounted for, is now clearly assessed. This paper reports recent developments and the current state of the art on this topic, concerning the numerical simulation of such flows as well as the stability studies. The continuity of the conservation equations between a fluid and a porous medium are examined and the conditions for a correct handling of the discontinuity of the macroscopic properties are analyzed. A particular class of problems dealing with thermal and double diffusive natural convection mechanisms in partially porous enclosures is presented, and it is shown that this configuration exhibits specific features in terms of the heat and mass transfer characteristics, depending on the properties of the porous domain. Concerning the stability analysis in a horizontal layer where a fluid layer lies on top of a porous medium, it is shown that the onset of convection is strongly influenced by the presence of the porous medium. The case of double diffusive convection is presented in detail.

References

1.
Beavers
,
G. S.
, and
Joseph
,
D. D.
, 1967, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
, pp.
197
207
.
2.
Chang
,
M.
, 2006, “
Thermal Convection in Superposed Fluid and Porous Layers Subjected to a Plane Poiseuille Flow
,”
Phys. Fluids
,
18
(
3
), pp.
1
7
.
3.
Chandesris
,
M.
, and
Jamet
,
D.
, 2006. “
Boundary Conditions at a Planar Fluid-Porous Interface for a Poiseuille Flow
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2137
2150
.
4.
Hill
,
A. A.
, and
Straughan
,
B.
, 2008, “
Poiseuille flow in a fluid overlying a porous medium
”.
J. Fluid Mech.
,
603
, pp.
137
149
.
5.
Chandesris
,
M.
, and
Jamet
,
D.
, 2009, “
Jump Cconditions and Surface-Excess Quantities at a Fluid/Porous Interface: a Multi-Scale Approach
,”
Transp. Porous Med.
,
78
(
3
), pp.
403
418
.
6.
Valdés-Parada
,
F. J.
,
Alvarez-Ramrez
,
J.
,
Goyeau
,
B.
, and
Ochoa-Tapia
,
J. A.
, 2009. “
Computation of Jump Coefficients for Momentum Transfer Between a Porous Medium and a Fluid Using a Closed Generalized Transfer Equation
,”
Transp. Porous Med.
,
78
(
3
), pp.
439
457
.
7.
Neale
,
G.
, and
Nader
,
W.
, 1974. “
Practical Significance of Brinkman’s Extension of Darcy’s Law: Coupled Parallel Flow Within a Channel and a Bounding Porous Medium
,”
Can. J. Chem. Eng.
,
52
, pp.
475
478
.
8.
Goyeau
,
B.
,
Lhuillier
,
D.
,
Gobin
,
D.
, and
Velarde
,
M. G.
, 2003. “
Momentum Transport at a Fluid-Porous Interface
,”
Int. J. Heat Mass Transfer
,
46
(
21
), pp.
4071
4081
.
9.
Einstein
,
A.
, 1906. “
Eine neue Bestimmung der Moleküldimensionen
,”
Ann. Phys.
,
19
(
4
), pp.
289
306
.
10.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1995, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid-I. Theoretical Development
,”
Int. J. Heat Mass Transfer
,
38
, pp.
2635
2646
.
11.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1995b. “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid-II. Comparison With Experiment
,”
Int. J. Heat Mass Transfer
,
38
, pp.
2647
2655
.
12.
Valdés-Parada
,
F. J.
,
Goyeau
,
B.
, and
Ochoa-Tapia
,
J. A.
, 2007. “
Jump Momentum Boundary Condition at a Fluid-Porous Dividing Surface: Derivation of the Closure Problem
,”
Chem. Eng. Sci.
,
62
, pp.
4025
4039
.
13.
Chandesris
,
M.
, and
Jamet
,
D.
, 2007. “
Boundary Conditions at a Fluid-Porous Interface: An A Priori Estimation of the Stress Jump Coefficients
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3422
3436
.
14.
Arquis
,
E.
, and
Caltagirone
,
J.
, 1984, “
Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieu poreux: application à la convection naturelle
,”
CR Acad. Sci. II B-MEC
,
299
, pp.
1
4
.
15.
Kataoka
,
I.
, 1986, “
Local Instant Formulation of Two-Phase Flow
,”
Int. J. Multiphase Flow
,
12
(
5
), pp.
745
758
.
16.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Chandesris
,
M.
, and
Jamet
,
D.
, 2009. “
Stability of Natural Convection in Superposed Fluid and Porous Layers: Equivalence of the One- and Two-Domain Approaches
,”
Int. J. Heat Mass Trans.
,
52
(
1–2
), pp.
533
536
.
17.
Jamet
,
D.
,
Chandesris
,
M.
, and
Goyeau
,
B.
, 2009. “
On the Equivalence of the Discontinuous One- and Two-Domain Approaches
,”
Transp. Porous Med.
,
78
,
403418
.
18.
Beckermann
,
C.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
, 1987. “
Natural Convection Flow and Heat Transfer Between a Fluid Layer and a Porous Layer Inside a Rectangular Enclosure
,”
J. Heat Transfer
,
109
, pp.
363
370
.
19.
LeBreton
,
P.
,
Caltagirone
,
J. P.
, and
Arquis
,
E.
, 1991, “
Natural Convection in a Square Cavity With Thin Porous Layers on Its Vertical Walls
,”
J. Heat Transfer
,
113
, pp.
892
898
.
20.
Mercier
,
J.
,
Weisman
,
C.
,
Firdaous
,
M.
, and
LeQuéré
,
P.
, 2002. “
Heat Transfer Associated to Natural Convection Flow in a Partly Porous Cavity
,”
J. Heat Transfer
,
124
, pp.
130
143
.
21.
Akbal
,
S.
, and
Baytas
,
F.
, 2008. “
Effects of Non-Uniform Porosity on Double Diffusive Natural Convection in a Porous Cavity with Partially Permeable Wall
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
875
885
.
22.
Gobin
,
D.
,
Goyeau
,
B.
, and
Songbe
,
J.
, 1998. “
Double Diffusive Natural Convection in a Composite Fluid-Porous Layer
,”
J. Heat Trans.
,
120
, pp.
234
242
.
23.
Bennacer
,
R.
, and
Gobin
,
D.
, 1996, “
Cooperating Thermosolutal Convection in Enclosures: Scale Analysis and Mass Transfer
,”
Int. J. Heat Mass Transfer.
,
39
(
13
), pp.
2671
2681
.
24.
Gobin
,
D.
, and
Bennacer
,
R.
, 1996. “
Cooperating Thermosolutal Convection in Enclosures: Heat Transfer and Flow Structure
,”
Int. J. Heat Mass Trans.
,
39
(
13
), pp.
2683
2697
.
25.
Bejan
,
A.
, and
Khair
,
K. R.
, 1985, “
Heat and Mass Transfer by Natural Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
28
(
5
), pp.
909
918
.
26.
Nield
,
D. A.
, 1977, “
Onset of Convection in a Fluid Layer Overlying a Layer of a Porous Medium
,”
J. Fluid Mech.
,
81
, pp.
513
522
.
27.
Nield
,
D. A.
, 1983, “
The Boundary Correction for the Rayleigh-Darcy Problem Limitations of the Brinkman Equation
,”
J. Fluid Mech.
,
128
, pp.
37
46
.
28.
Chen
,
F.
, and
Chen
,
C. F.
, 1988, “
Onset of Finger Convection in a Horizontal Porous Layer Underlying a Fluid Layer
,”
J. Heat Transfer
,
110
, pp.
403
409
.
29.
Carr
,
M.
, and
Straughan
,
B.
, 2003, “
Penetrative Convection in a Fluid Overlying a Porous Layer
,”
Adv. Water Resour.
,
26
(
3
), pp.
263
276
.
30.
Brinkman
,
H. C.
, 1947, “
A Calculation of the Viscous Force Exerted by Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res.
,
A1
, pp.
27
34
.
31.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Carr
,
M.
, and
Cotta
,
R. M.
, 2007, “
Stability Analysis of Natural Convection in Adjacent Fluid and Porous Layer: Influence of Interfacial Modeling
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1356
1367
.
32.
Zhao
,
P.
, and
Chen
,
C. F.
, 2001, “
Stability Analysis of Double-Diffusive Convection in Superposed Fluid and Porous Layers Using a One-Equation Model
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4625
4633
.
33.
Whitaker
,
S.
, 1999,
The Method of Volume Averaging
, Vol.
13
.
Kluwer Academic Publishers
,
Dordrecht
.
34.
Schwartz
,
L.
, 1961,
Méthodes mathématiques pour les sciences physiques
,
Hermann
,
Paris
.
35.
Cotta
,
R. M.
, 1993,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
36.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
, and
Cotta
,
R. M.
, 2006, “
Stability in Natural Cconvection in Superposed Fluid and Porous Layers Using Integral Transforms
,”
Numer. Heat Transfer
,
50
(
5
), pp.
409
424
.
37.
Hirata
,
S. C.
,
Goyeau
,
B.
, and
Gobin
,
D.
, 2007. “
Stability of Natural Convection in Superposed Fluid and Porous Layer: Influence of the Interfacial Jump Boundary Condition
,”
Phys. Fluids
,
19
,
058102
.
38.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
,
London
.
39.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
Springer-Verlag
,
New York
.
40.
Amberg
,
G.
, and
Homsy
,
G.
, 1993, “
Nonlinear Analysis of Buoyant Convection in Binary Solidification With Application With Channel Formation
,”
J. Fluid Mech.
,
252
, pp.
79
98
.
41.
Worster
,
M. G.
, 1997, “
Convection in Mushy Layers
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
91
122
.
42.
Worster
,
M.
, 2000, “
Solidification of Fluids
,”
Perspectives in Fluid Dynamics
,
Cambridge University Press
,
Cambridge
, Chap. VIII, pp.
393
446
.
43.
Guba
,
P.
, and
Worster
,
M.
, 2006, “
Free Convection in Laterally Solidifying Mushy Regions
,”
J. Fluid Mech.
,
558
, pp.
69
78
.
44.
Alexandrov
,
D.
, and
Vizovtseva
,
I.
, 2008, “
To the Theory of Underwater Ice Evolution, or Nonlinear Dynamics of False Bottoms
,”
Int. J. Heat Mass Transfer
,
51
(
21
), pp.
5204
5208
.
45.
Tatarniuk
,
C.
,
Donahue
,
R.
, and
D. S.
,
, 2009, “
Freeze Sseparation of Salt Contaminated Melt Water and Sand Wash Water at Snow Storage and Sand Recycling Facilities
,”
Cold Regions Sci. Technol.
,
57
, pp.
61
66
.
46.
Hill
,
A. A.
, and
Carr
,
M.
, 2010, “
Sharp Global Nonlinear Stability for a Fluid Overlying a Highly Porous Material
,”
Proc. R. Soc. Ser. A
,
466
(
2113
), pp.
127
140
.
You do not currently have access to this content.