The effective heat and mass transport properties of a porous packed bed of particles undergoing a high-temperature solid–gas thermochemical transformation are determined. The exact 3D geometry of the reacting porous media is obtained by high-resolution computed tomography. Finite volume techniques are applied to solve the governing conservation equations at the pore-level scale and to determine the effective transport properties as a function of the reaction extent, namely, the convective heat transfer coefficient, permeability, Dupuit–Forchheimer coefficient, tortuosity, and residence time distributions. These exhibit strong dependence on the bed morphological properties (e.g., porosity, specific surface area, particle size) and, consequently, vary with time as the reaction progresses.

References

1.
von Zedtwitz
,
P.
, and
Steinfeld
,
A.
, 2003, “
The Solar Thermal Gasification of Coal—Energy Conversion Efficiency and CO2 Mitigation Potential
,”
Energy
,
28
, pp.
441
456
.
2.
Schunk
,
L.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2008, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Solar Energy Eng.
,
130
, p.
0210091
.
3.
Piatkowski
,
N.
,
Wieckert
,
C.
, and
Steinfeld
,
A.
, 2009, “
Experimental Investigation of a Packed-Bed Solar Reactor for the Steam-Gasification of Carbonaceous Feedstocks
,”
Fuel Process. Technol.
,
90
, pp.
360
366
.
4.
Whitaker
,
S.
, 1999, “
The Method of Volume Averaging
,”
Theory and Applications of Transport in Porous Media
, Vol.
13
,
J.
Bear
, ed.,
Kluwer Academic Publishers
.
5.
Gnielinski
,
V.
, 1978,
Gleichung zu Berechnung der Wärme- und Stoffaustausches in durchströmten ruhenden Kugelschüttungen bei mittleren und grossen Pecletzahlen
, Verfahrenstechnik,
12
, pp.
363
366
.
6.
Wakao
,
N.
, and
Kaguei
,
S.
, 1982,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publishers
.
7.
Gunn
,
D.
, 1978, “
Transfer of Heat and Mass to Particles in Fixed and Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
21
, pp.
467
476
.
8.
Saidi
,
M.
,
Rasouli
,
F.
, and
Hajaligol
,
M.
, 2006, “
Heat Transfer Coefficient for a Packed Bed of Shredded Materials at Low Peclet Numbers
,”
Heat Transfer Eng.
,
27
, pp.
41
49
.
9.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
10.
Dullien
,
F.
, 1979,
Porous Media Fluid Transport and Pore Structure
,
Academic Press
,
New York
.
11.
Kuwabara
,
S.
, 1959, “
The Forces Experienced by Randomly Distributed Parallel Circular Cylinder or Spheres in a Viscous Flow at Small Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
14
, pp.
527
532
.
12.
Sparrow
,
E.
, and
Loeffler
,
A.
, 1959, “
Longitudinal Laminar Flow Between Cyclinders Arranged in a Regular Array
,”
Am. Inst. Chem. Eng.
,
5
, pp.
325
330
.
13.
Happel
,
J.
, and
Brenner
,
H.
, 1986,
Low Reynolds Number Hydrodynamics
,
Martinus Nijhoff Publishers
.
14.
Torquato
,
S.
, 1990, “
Relationship Between Permeability and Diffusion Controlled Trapping Constant of Porous Media
,”
Phys. Rev. Lett.
,
64
, pp.
2644
2646
.
15.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
, 1979, “
Flow Through Porous Media—The Ergun Equation revisited
,”
Ind. Eng. Chem. Fundam.
,
18
, pp.
199
208
.
16.
Ward
,
J.
, 1964, “
Turbulent Flow in Porous Media
,”
J. Am. Soc. Civ. Eng.
,
90
, pp.
1
12
.
17.
Petrasch
,
J.
,
Meier
,
F.
,
Friess
,
H.
, and
Steinfeld
,
A.
, 2008, “
Tomography Based Determination of Permeability, Dupuit-Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics
,”
Int. J. Heat Fluid Flow
,
29
, pp.
315
326
.
18.
Haussener
,
S.
,
Coray
,
P.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Trans.
,
132
, p.
023305
.
19.
Ferréol
,
B.
, and
Rothman
,
D.
, 1995, “
Lattice-Boltzmann Simulation of Flow Through Fontainebleau Sandstone
,”
Transp. Porous Media
,
20
, pp.
3
20
.
20.
Humby
,
S.
, 1999, “
Modelling of Flow and Colloids in Porous Media
,” Ph.D. thesis, University of Surrey, Guildford, UK.
21.
Auzerai
,
F.
,
Dunsmuir
,
J.
,
Ferréol
,
B.
,
Martys
,
N.
,
Olson
,
J.
,
Ramakrishnan
,
T.
,
Rothmann
,
D.
, and
Schwartz
,
L.
, 1996, “
Transport in Sandstone: A Study Based on Three Dimensional Microtomography
,”
Geophys. Res. Lett.
,
23
, pp.
3
20
.
22.
Brensdorf
,
J.
,
Brenner
,
G.
, and
Dust
,
F.
, 2000, “
Numerical Analysis of the Pressure Drop in Porous Media Flow With Lattice Boltzmann (BGK) Automata
,”
Comput. Phys. Commun.
,
129
, pp.
247
255
.
23.
Spanne
,
P.
,
Thovert
,
J.
,
Jacquin
,
C.
,
Lindquist
,
W.
,
Jones
,
K.
, and
Adler
P.
, 1994, “
Synchrotron Computed Microtomography of Porous Media: Topology and Transport
,”
Phys. Rev. Lett.
,
73
, pp.
2001
2004
.
24.
Haussener
,
S.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Analysis of Radiative Transfer in Reacting Packed Beds Undergoing a Solid-Gas Thermochemical Transformation
,”
ASME J. Heat Trans.
,
132
, p.
061201
.
25.
Streun
,
A.
,
Böge
,
A.
,
Dehler
,
M.
,
Gough
,
C.
,
Joho
,
W.
,
Korhonen
,
T.
,
Lüdeke
,
A.
,
Marchand
,
P.
,
Muñoz
,
Pedrozzi
,
M.
,
Rivkin
,
L.
,
Schilcher
,
T.
,
Schlott
,
V.
,
Schulz
,
L.
, and
Wrulich
,
A.
, 2001, “
Commissioning of the Swiss Light Source
,”
Proceedings of the 2001 Particle Accelerator Conference
,
P.
Lucas
and
S.
Webber
, eds.,
IEEE
,
Piscataway
, pp.
224
226
.
26.
Stampanoni
,
M.
,
Groso
,
A.
,
Isenegger
,
A.
,
Mikuljian
,
G.
,
Chen
,
Q.
,
Bertrand
,
A.
,
Henein
,
S.
,
Betemps
,
R.
,
Frommherz
,
U.
,
Böhler
,
P.
,
Meister
,
D.
,
Lnage
,
M.
, and
Abela
,
R.
, 2006, “
Trends in Synchrotron-Based Tomographic Imaging: The SLS Experience
,”
Proc. SPIE
,
6318
, pp.
M
-1–M-
14
.
27.
Ansys Inc., 2009, Ansys CFX-12.0, www.ansys.comwww.ansys.com.
28.
Mousa
,
A.
, 1984, “
Prediction of Gas-Particle Heat Transfer Coefficients by Pulse Technique
,”
Ind. Eng. Chem. Process. Des. Dev.
,
23
, pp.
805
808
.
29.
Darcy
,
H.
, 1856,
Les Fontaines Publiques sur le movement des eaux
,
Dalmont
,
Paris
.
30.
Forchheimer
,
P.
, 1901, “
Water Movement Through Ground
,”
Zeitschrift des Vereins Deutscher Ingenieure
,
45
, pp.
1782
1788
.
31.
Kyan
,
C.
,
Wasan
,
D.
, and
Kintner
,
R.
, 1970, “
Flow of Single-Phase Fluids Through Fibrous Beds
,”
Ind. Eng. Chem. Fundam.
,
9
, pp.
596
603
.
32.
Rumpf
,
H.
, and
Gupte
,
A.
, 1971, “
Influence of Porosity and Particle Size Distribution in Resistance Law of Porous Flow
,”
Chem. Eng. Technol.
,
43
, pp.
367
375
.
33.
Itoh
,
S.
, 1983, “
The Permeability of a Random Array of Identical Rigid-Spheres
,”
J. Phys. Soc. Jpn.
,
52
, pp.
2379
2388
.
34.
Davis
,
R.
, and
Stone
,
H.
, 1993, “
Flow Through Beds of Porous Particles
,”
Chem. Eng. Sci.
,
48
, pp.
3993
4005
.
You do not currently have access to this content.