Fundamental problem of heat transfer within a half-space due to a moving heat source of hyperelliptical geometry is studied in this work. The considered hyperelliptical geometry family covers a wide range of heat source shapes, including star-shaped, rhombic, elliptical, rectangular with round corners, rectangular, circular, and square. The effects of the heat source speed, aspect ratio, corners, and orientation are investigated using the general solution of a moving point source on a half-space and superposition. Selecting the square root of the heat source area as the characteristics length scale, it is shown that the maximum temperature within the half-space is a function of the heat source speed (Peclet number) and its aspect ratio. It is observed that the details of the exact heat source shape have negligible effect on the maximum temperature within the half-space. New general compact relationships are introduced that can predict the maximum temperature within the half-space with reasonable accuracy. The validity of the suggested relationships is examined by available experimental and numerical data for the grinding process, for medium Peclet numbers. For ultrafast heat sources, an independent experimental study is performed using a commercial CO2 laser system. The measured depth of the engraved grooves is successfully predicted by the proposed relationships.

1.
Sun
,
Y.
,
Kwok
,
Y. C.
, and
Nguyen
,
N. T.
, 2006, “
Low-Pressure, High-Temperature Thermal Bonding of Polymeric Microfluidic Devices and Their Applications for Electrophoretic Separation
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1681
1688
.
2.
Kricka
,
L. J.
,
Fortina
,
P.
,
Panaro
,
N. J.
,
Wilding
,
P.
,
Alonso-Amigo
,
G.
, and
Becker
,
H.
, 2002, “
Fabrication of Plastic Microchips by Hot Embossing
,”
Lab Chip
1473-0197,
2
(
1
), pp.
1
4
.
3.
Halling
,
J.
, 1975,
Principles of Tribology
,
Macmillan
,
London
.
4.
Williams
,
J. A.
, 2005,
Engineering Tribology
,
Cambridge University Press
,
Cambridge, UK
.
5.
Winer
,
W. O.
, and
Cheng
,
H. S.
, 1980, “
Film Thickness, Contact Stress and Surface Temperatures
,”
Wear Control Handbook
,
ASME
,
New York
, pp.
81
141
.
6.
Tian
,
X.
, and
Kennedy
,
F. E.
, Jr.
, 1994, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
116
, pp.
167
174
.
7.
Hou
,
Z. B.
, and
Komanduri
,
R.
, 2000, “
General Solutions for Stationary/Moving Plane Heat Source Problems in Manufacturing and Tribology
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
10
), pp.
1679
1698
.
8.
Laraqi
,
N.
,
Baīri
,
A.
, and
Segui
,
L.
, 2004, “
Temperature and Thermal Resistance in Frictional Devices
,”
Appl. Therm. Eng.
1359-4311,
24
(
17–18
), pp.
2567
2581
.
9.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
New York
.
10.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2001, “
Thermal Resistance Models for Non-Circular Moving Heat Sources on a Half Space
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
624
632
.
11.
Rosenthal
,
D.
, 1946, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. ASME
0097-6822,
68
(
11
), pp.
849
866
.
12.
Weichert
,
R.
, and
Schonert
,
K.
, 1978, “
Temperature Distribution Produced by a Moving Heat Source
,”
Q. J. Mech. Appl. Math.
0033-5614,
31
(
3
), pp.
363
379
.
13.
Terauchi
,
Y.
,
Nadano
,
H.
, and
Kohno
,
M.
, 1985, “
On the Temperature Rise Caused by Moving Heat Sources. II: Calculation of Temperature Considering Heat Radiation From Surface
,”
Bull. JSME
0021-3764,
28
(
245
), pp.
2789
2795
.
14.
Yovanovich
,
M. M.
, 1997, “
Transient spreading resistance of arbitrary isoflux contact areas-development of a universal time function
,” presented at the
32nd AIAA Thermophysics Conference
, Atlanta, GA.
15.
Yovanovich
,
M. M.
,
Negus
,
K. J.
, and
Thompson
,
J. C.
, 1984, “
Transient Temperature Rise of Arbitrary Contacts With Uniform Flux by Surface Element Methods
,” presented at the
22nd AIAA Aerospace Sciences Meeting
, Reno, NV, Jan. 9–12.
17.
Simms
,
D. L.
, 1960, “
Ignition of Cellulosic Materials by Radiation
,”
Combust. Flame
0010-2180,
4
, pp.
293
300
.
18.
Koohyar
,
A. N.
, 1967,
Ignition of Wood by Flame Radiation
,
University of Oklahoma
,
Norman, OK
.
19.
Kashiwagi
,
T.
, 1979, “
Experimental Observation of Radiative Ignition Mechanisms
,”
Combust. Flame
0010-2180,
34
, pp.
231
244
.
20.
Kashiwagi
,
T.
, 1979, “
Effects of Attenuation of Radiation on Surface Temperature for Radiative Ignition
,”
Combust. Sci. Technol.
0010-2202,
20
(
5
), pp.
225
234
.
21.
Wesson
,
H. R.
, 1970,
The Piloted Ignition of Wood by Radiant Heat
,
University of Oklahoma
,
Norman, OK
.
22.
Taylor
,
J. R.
, 1997,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
University Science Books
,
Herndon, VA
.
23.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
76
, pp.
203
224
.
24.
Vick
,
B.
, and
Furey
,
M. J.
, 2003, “
An Investigation Into the Influence of Frictionally Generated Surface Temperatures on Thermionic Emission
,”
Wear
0043-1648,
254
(
11
), pp.
1155
1161
.
25.
Xu
,
X.
, and
Malkin
,
S.
, 2001, “
Comparison of Methods to Measure Grinding Temperatures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
191
195
.
26.
Takazawa
,
K.
, 1966, “
Effects of Grinding Variables on Surface Structure of Hardened Steel
,”
Bull. Jap. Soc. Grind Eng.
,
6
, pp.
14
19
.
27.
Paek
,
U. -C.
, and
Gagliano
,
F.
, 1972, “
Thermal Analysis of Laser Drilling Processes
,”
IEEE J. Quantum Electron.
0018-9197,
8
(
2
), pp.
112
119
.
28.
Eagar
,
T. W.
, and
Tsai
,
N. S.
, 1983, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
62
(
12
), pp.
346
355
.
29.
Zhang
,
H. J.
, 1990, “
Non-Quasi-Steady Analysis of Heat Conduction From a Moving Heat Source
,”
ASME Trans. J. Heat Transfer
0022-1481,
112
, pp.
777
779
.
30.
Manca
,
O.
,
Morrone
,
B.
, and
Naso
,
V.
, 1995, “
Quasi-Steady-State Three-Dimensional Temperature Distribution Induced by a Moving Circular Gaussian Heat Source in a Finite Depth Solid
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
7
), pp.
1305
1315
.
31.
Yevtushenko
,
A. A.
,
Ivanyk
,
E. G.
, and
Ukhanska
,
O. M.
, 1997, “
Transient Temperature of Local Moving Areas of Sliding Contact
,”
Tribol. Int.
0301-679X,
30
(
3
), pp.
209
214
.
32.
Zeng
,
Z.
,
Brown
,
J. M. B.
, and
Vardy
,
A. E.
, 1997, “
On Moving Heat Sources
,”
Heat Mass Transfer
0947-7411,
33
(
1–2
), pp.
41
49
.
33.
Zubair
,
S. M.
, and
Chaudhry
,
M. A.
, 1998, “
A Unified Approach to Closed-Form Solutions of Moving Heat-Source Problems
,”
Heat Mass Transfer
0947-7411,
33
(
5–6
), pp.
415
424
.
34.
Zubair
,
S. M.
, and
Chaudhry
,
M. A.
, 1996, “
Temperature Solutions Due to Time-Dependent Moving-Line-Heat Sources
,”
Heat Mass Transfer
0947-7411,
31
(
3
), pp.
185
189
.
35.
Kato
,
T.
, and
Fujii
,
H.
, 1997, “
Temperature Measurement of Workpiece in Surface Grinding by PVD Film Method
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
689
694
.
36.
Kaebernick
,
H.
,
Bicleanu
,
D.
, and
Brandt
,
M.
, 1999, “
Theoretical and Experimental Investigation of Pulsed Laser Cutting
,”
CIRP Ann.
0007-8506,
48
(
1
), pp.
163
166
.
37.
Neder
,
Z.
,
Varadi
,
K.
,
Man
,
L.
, and
Friedrich
,
K.
, 1999, “
Numerical and Finite Element Contact Temperature Analysis of Steel-Bronze Real Surfaces in Dry Sliding Contact
,”
Tribol. Trans.
1040-2004,
42
(
3
), pp.
453
462
.
38.
Baīri
,
A.
, 2003, “
Analytical Model for Thermal Resistance Due to Multiple Moving Circular Contacts on a Coated Body
,”
C. R. Mec.
1631-0721,
331
(
8
), pp.
557
562
.
39.
Li
,
J. F.
,
Li
,
L.
, and
Stott
,
F. H.
, 2004, “
Comparison of Volumetric and Surface Heating Sources in the Modeling of Laser Melting of Ceramic Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
6–7
), pp.
1159
1174
.
40.
Kuo
,
W. L.
, and
Lin
,
J. F.
, 2006, “
General Temperature Rise Solution for a Moving Plane Heat Source Problem in Surface Grinding
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
31
(
3–4
), pp.
268
277
.
41.
Bianco
,
N.
,
Manca
,
O.
,
Nardini
,
S.
, and
Tamburrino
,
S.
, 2006, “
Transient Heat Conduction in Solids Irradiated by a Moving Heat Source
,” presented at the
Proceedings of COMSOL Users Conference
, Milan.
42.
Wen
,
J.
, and
Khonsari
,
M. M.
, 2007, “
Analytical Formulation for the Temperature Profile by Duhamel’s Theorem in Bodies Subjected to an Oscillatory Heat Source
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
236
240
.
43.
Levin
,
P.
, 2008, “
A General Solution of 3-D Quasi-Steady-State Problem of a Moving Heat Source on a Semi-Infinite Solid
,”
Mech. Res. Commun.
0093-6413,
35
(
3
), pp.
151
157
.
44.
Laraqi
,
N.
,
Alilat
,
N.
,
de Maria
,
J. M.
, and
Baīri
,
A.
, 2009, “
Temperature and Division of Heat in a Pin-on-Disc Frictional Device—Exact Analytical Solution
,”
Wear
0043-1648,
266
(
7–8
), pp.
765
770
.
45.
Xu
,
H.
,
Chen
,
W. W.
,
Zhou
,
K.
,
Huang
,
Y.
, and
Wang
,
Q. J.
, 2010, “
Temperature Field Computation for a Rotating Cylindrical Workpiece Under Laser Quenching
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
47
(
5–8
), pp.
679
686
.
You do not currently have access to this content.