Radiation exchanges must be taken into account to improve large eddy simulation (LES) prediction of turbulent combustion, in particular, for wall heat fluxes. Because of its interaction with turbulence and its impact on the formation of polluting species, unsteady coupled calculations are required. This work constitutes a first step toward coupled LES-radiation simulations, selecting the optimal methodology based on systematic comparisons of accuracy and CPU cost. Radiation is solved with the discrete ordinate method (DOM) and different spectral models. To reach the best compromise between accuracy and CPU time, the performance of various spectral models and discretizations (angular, temporal, and spatial) is studied. It is shown that the use of a global spectral model combined with a mesh coarsening (compared with the LES mesh) and a minimal coupling frequency Nit allows to compute one radiative solution faster than Nit LES iterations while keeping a good accuracy. It also appears that the impact on accuracy of the angular discretization in the DOM is very small compared with the impact of the spectral model. The determined optimal methodology may be used to perform unsteady coupled calculations of turbulent combustion with radiation.

1.
Coelho
,
P. J.
, 2009, “
Approximate Solutions of the Filtered Radiative Transfer Equation in Large Eddy Simulations of Turbulent Reactive Flows
,”
Combust. Flame
0010-2180,
156
(
5
), pp.
1099
1110
.
2.
Joseph
,
D.
, 2004, “
Modélisation des transferts radiatifs en combustion par méthode aux ordonnées discrètes sur des maillages non structurés tridimensionnels
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
3.
Gonçalves dos Santos
,
R.
, 2007, “
Large Eddy Simulation of Turbulent Combustion Including Radiative Heat Transfer
,” Ph.D. thesis, EM2C, Chatenay Malabry, France.
4.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Ann Arbor, MI
.
5.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
, 2008, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
0010-2180,
154
(
1–2
), pp.
2
22
.
6.
Nottin
,
C.
,
Knikker
,
R.
,
Boger
,
M.
, and
Veynante
,
D.
, 2000, “
Large Eddy Simulations of an Acoustically Excited Turbulent Premixed Flame
,”
Symp. Combust. Proc.
,
28
(
1
), pp.
67
73
.
7.
Roux
,
A.
,
Gicquel
,
L.
,
Sommerer
,
Y.
, and
Poinsot
,
T.
, 2008, “
Large Eddy Simulation of Mean and Oscillating Flow in Side-Dump Ramjet Combustor
,”
Combust. Flame
0010-2180,
152
(
1–2
), pp.
154
176
.
8.
Boudier
,
G.
,
Gicquel
,
L.
, and
Poinsot
,
T.
, 2008, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
0010-2180,
155
, pp.
196
214
.
9.
Coelho
,
P. J.
, 2007, “
Numerical Simulation of the Interaction Between Turbulence and Radiation in Reactive Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
33
(
4
), pp.
311
383
.
10.
Desjardin
,
P. E.
, and
Frankel
,
S. H.
, 1999, “
Two-Dimensional Large Eddy Simulation of Soot Formation in the Near-Field of a Strongly Radiating Nonpremixed Acetylene-Air Turbulent Jet Flame
,”
Combust. Flame
0010-2180,
119
(
1–2
), pp.
121
132
.
11.
Jones
,
W.
, and
Paul
,
M.
, 2005, “
Combination of DOM With LES in a Gas Turbine Combustor
,”
Int. J. Eng. Sci.
0020-7225,
43
(
5–6
), pp.
379
397
.
12.
Joseph
,
D.
,
Hafi
,
M. E.
,
Fournier
,
R.
, and
Cuenot
,
B.
, 2005, “
Comparison of Three Spatial Differencing Schemes in Discrete Ordinates Method Using Three-Dimensional Unstructured Meshes
,”
Int. J. Therm. Sci.
1290-0729,
44
(
9
), pp.
851
864
.
13.
Joseph
,
D.
,
Perez
,
P.
,
Hafi
,
M. E.
, and
Cuenot
,
B.
, 2009, “
Discrete Ordinates and Monte-Carlo Methods for Radiative Transfer Simulation Applied to Computational Fluid Dynamics Combustion Modeling
,”
ASME J. Heat Transfer
0022-1481,
131
(
5
), p.
052701
.
14.
Gonçalves dos Santos
,
R.
,
Lecanu
,
M.
,
Ducruix
,
S.
,
Gicquel
,
O.
,
Iacona
,
E.
, and
Veynante
,
D.
, 2008, “
Coupled Large Eddy Simulations of Turbulent Combustion and Radiative Heat Transfer
,”
Combust. Flame
0010-2180,
152
(
3
), pp.
387
400
.
15.
Knikker
,
R.
,
Veynante
,
D.
,
Rolon
,
J.
, and
Meneveau
,
C.
, 2000, “
Planar Laser-Induced Fluorescence in a Turbulent Premixed Flame to Analyze Large Eddy Simulation Models
,”
Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
.
16.
Knikker
,
R.
,
Veynante
,
D.
, and
Meneveau
,
C.
, 2002, “
A Priori Testing of a Similarity Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Proc. Combust. Inst.
1540-7489,
29
(
2
), pp.
2105
2111
.
17.
Colin
,
O.
, and
Rudgyard
,
M.
, 2000, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
0021-9991,
162
(
2
), pp.
338
371
.
18.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 1998, “
Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries
,”
Proceedings of the 6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
M. J.
Baines
, ed., pp.
293
300
.
19.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
1386-6184,
62
(
3
), pp.
183
200
.
20.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 2000, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion Part 2
,”
Phys. Fluids
1070-6631,
12
(
7
), pp.
1843
1863
.
21.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. -U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large-Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
0010-2180,
137
(
4
), pp.
489
505
.
22.
Poinsot
,
T.
, and
Lele
,
S.
, 1992, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
0021-9991,
101
(
1
), pp.
104
129
.
23.
Amaya
,
J.
, 2010, “
Unsteady Coupled Convection, Conduction and Radiation Simulations on Parallel Architectures for Combustion Applications
,” Ph.D. thesis, CERFACS, Toulouse, France.
24.
Poitou
,
D.
, 2009, “
Modélisation du rayonnement dans la simulation aux grandes échelles de la combustion turbulente
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
25.
Joseph
,
D.
,
Coelho
,
P. J.
,
Cuenot
,
B.
, and
Hafi
,
M. E.
, 2003, “
Application of the Discrete Ordinates Method to Grey Media in Complex Geometries Using 3-Dimensional Unstructured Meshes
,”
Proceedings of the Eurotherm 73: Computational Thermal Radiation in Participating Media
(
Eurotherm Series
, Vol.
11
), pp.
97
106
.
26.
Jensen
,
K. A.
,
Ripoll
,
J.
,
Wray
,
A.
,
Joseph
,
D.
, and
Hafi
,
M. E.
, 2007, “
On Various Modeling Approaches to Radiative Heat Transfer in Pool Fires
,”
Combust. Flame
0010-2180,
148
(
4
), pp.
263
279
.
27.
Truelove
,
J. S.
, 1987,
Discrete-Ordinate Solutions of the Radiation Transport Equation
,
University of Newcastle
,
New South Wales, Australia
.
28.
Goutière
,
V.
,
Liu
,
F.
, and
Charette
,
A.
, 2000, “
An Assessment of Real-Gas Modelling in 2D Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
64
(
3
), pp.
299
326
.
29.
Goutière
,
V.
,
Charette
,
A.
, and
Kiss
,
L.
, 2002, “
Comparative Performance of Non-Gray Gas Modeling Techniques
,”
Numer. Heat Transfer, Part B
1040-7790,
41
(
3&4
), pp.
361
381
.
30.
Soufiani
,
A.
, and
Taine
,
J.
, 1997, “
High Temperature Gas Radiative Propriety Parameters of Statistical Narrow-Band Model for H2O
, CO2 and CO and Correlated-k Model for H2O and CO2,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
987
991
.
31.
Soufiani
,
A.
, and
Djavdan
,
E.
, 1994, “
A Comparison Between Weighted Sum of Gray Gases and Statistical Narrow-Band Radiation Models for Combustion Applications
,”
Combust. Flame
0010-2180,
97
(
2
), pp.
240
250
.
32.
Liu
,
F.
,
Yang
,
M.
,
Smallwood
,
G.
, and
Zhang
,
H.
, 2004, “
Evaluation of the SNB Based Full-Spectrum CK Method for Thermal Radiation Calculations in CO2–H2O Mixtures
,”
Proceedings of the ICHMT, RAD04
, Istanbul, Turkey.
33.
Poitou
,
D.
,
Amaya
,
J.
,
Bushan Singh
,
C.
,
Joseph
,
D.
,
Hafi
,
M. E.
, and
Cuenot
,
B.
, 2009, “
Validity Limits for the Global Model FS-SNBcK for Combustion Applications
,”
Proceedings of the Eurotherm 83: Computational Thermal Radiation in Participating Media III
, Lisbon.
34.
Amaya
,
J.
,
Cabrit
,
O.
,
Poitou
,
D.
,
Cuenot
,
B.
, and
Hafi
,
M. E.
, 2010, “
Unsteady Coupling of Navier-Stokes and Radiative Heat Transfer Solvers Applied to an Anisothermal Multicomponent Turbulent Channel Flow
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
111
(
2
), pp.
295
301
.
35.
Duchaine
,
F.
,
Corpron
,
A.
,
Pons
,
L.
,
Moureau
,
V.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 2009, “
Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer With Large Eddy Simulation. Application to a Cooled Turbine Blade
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1129
1141
.
36.
Leacanu
,
M.
, 2005, “
Couplage multi-physique combustion turbulente—rayonnement—cinétique chimique
,” Ph.D. thesis, École Centrale Paris, Paris, France.
37.
Wang
,
Y.
, 2005, “
Direct Numerical Simulation of Non-Premixed Combustion With Soot and Thermal Radiation
,” Ph.D. thesis, University of Maryland, College Park, MD.
38.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
, 2007, “
Highly Parallel Large Eddy Simulations of Multiburner Configurations in Industrial Gas Turbines
,”
Complex Effects in Large Eddy Simulations
(
Lecture Notes in Computational Science and Engineering
),
Springer
,
New York
, pp.
325
336
.
39.
Koch
,
R.
, and
Becker
,
R.
, 2004, “
Evaluation of Quadrature Schemes for the Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
(
4
), pp.
423
435
.
40.
Zhang
,
J.
,
Gicquel
,
O.
,
Veynante
,
D.
, and
Taine
,
J.
, 2009, “
Monte Carlo Method of Radiative Transfer Applied to a Turbulent Flame Modeling With LES
,”
C. R. Mec.
1631-0721,
337
(
6–7
), pp.
539
549
.
41.
Poitou
,
D.
,
Hafi
,
M. E.
, and
Cuenot
,
B.
, 2007, “
Diagnosis of Turbulence Radiation Interaction in Turbulent Flames and Implications for Modeling in Large Eddy Simulation
,”
Turk. J. Eng. Environ. Sci.
1300-0160,
31
, pp.
371
381
.
42.
Roger
,
M.
,
Silva
,
C. B. D.
, and
Coelho
,
P. J.
, 2009, “
Analysis of the Turbulence-Radiation Interactions for Large Eddy Simulations of Turbulent Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
9–10
), pp.
2243
2254
.
43.
Roger
,
M.
,
Coelho
,
P. J.
, and
da Silva
,
C. B.
, 2010, “
The Influence of the Non-Resolved Scales of Thermal Radiation in Large Eddy Simulation of Turbulent Flows: A Fundamental Study
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
13–14
), pp.
2897
2907
.
44.
Chandy
,
A. J.
,
Glaze
,
D. J.
, and
Frankel
,
S. H.
, 2009, “
A Hybrid Large Eddy Simulation/Filtered Mass Density Function for the Calculation of Strongly Radiating Turbulent Flames
,”
ASME J. Heat Transfer
0022-1481,
131
(
5
), p.
051201
.
45.
Palik
,
E. D.
, and
Ghosh
,
G.
, 1998,
Handbook of Optical Constants of Solids
,
Academic
,
New York
.
You do not currently have access to this content.