Experimental observations of dropwise condensation of water vapor on a chemically textured surface of glass and its detailed computer simulation are presented. Experiments are focused on the pendant mode of dropwise condensation on the underside of horizontal and inclined glass substrates. Chemical texturing of glass is achieved by silanation using octyl-decyl-tri-chloro-silane (C18H37C13Si) in a chemical vapor deposition process. The mathematical model is built in such a way that it captures all the major physical processes taking place during condensation. These include growth due to direct condensation, droplet coalescence, sliding, fall-off, and renucleation of droplets. The effects arising from lyophobicity, namely, the contact angle variation and its hysteresis, inclination of the substrate, and saturation temperature at which the condensation is carried out, have been incorporated. The importance of higher order effects neglected in the simulation is discussed. The results of model simulation are compared with the experimental data. After validation, a parametric study is carried out for cases not covered by the experimental regime, i.e., various fluids, substrate inclination angle, saturation temperature, and contact angle hysteresis. Major conclusions arrived at in the study are the following: The area of droplet coverage decreases with an increase in both static contact angle of the droplet and substrate inclination. As the substrate inclination increases, the time instant of commencement of sliding of the droplet is advanced. The critical angle of inclination required for the inception of droplet sliding varies inversely with the droplet volume. For a given static contact angle, the fall-off time of the droplet from the substrate is a linear function of the saturation temperature. For a given fluid, the drop size distribution is well represented by a power law. Average heat transfer coefficient is satisfactorily predicted by the developed model.

1.
Rose
,
J. W.
, 2002, “
Dropwise Condensation Theory and Experiments: A Review
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
115
128
.
2.
Leipertz
,
A.
, and
Fröba
,
A. P.
, 2006, “
Improvement of Condensation Heat Transfer by Surface Modification
,”
Proceedings of the Seventh ASME, Heat and Mass Transfer Conference
, IIT Guwahati, India, K7, pp.
k85
k99
.
3.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase-Change Phenomena
,
Hemisphere
,
New York
, pp.
342
351
.
4.
Marto
,
P. J.
,
Looney
,
D. J.
, and
Rose
,
J. W.
, 1986, “
Evaluation of Organic Coating for the Promotion of Dropwise Condensation of Steam
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1109
1117
.
5.
Zhao
,
Q.
,
Zhang
,
D. C.
,
Lin
,
J. F.
, and
Wang
,
G. M.
, 1996, “
Dropwise Condensation on L-B Film Surface
,”
Chem. Eng. Process.
0255-2701,
35
, pp.
473
477
.
6.
Vemuri
,
S.
,
Kim
,
K. J.
,
Wood
,
B. D.
,
Govindaraju
,
S.
, and
Bell
,
T. W.
, 2006, “
Long Term Testing for Dropwise Condensation Using Self-Assembled Monolayer Coating of N-Octadecyl Mercaptan
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
421
429
.
7.
Rausch
,
M. H.
,
Fröba
,
A. P.
, and
Leipertz
,
A.
, 2008, “
Dropwise Condensation Heat Transfer on Ion Implanted Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1061
1070
.
8.
Ma
,
X. -H.
, and
Wang
,
B. -X.
, 1999, “
Life Time Test of Dropwise Condensation on Polymer-Coated Surfaces
,”
Heat Transfer Asian Res.
1099-2871,
28
(
7
), pp.
551
558
.
9.
Majumdar
,
A.
, and
Mezic
,
I.
, 1999, “
Instability of Ultra-Thin Water Film and the Mechanism of Droplet Formation on Hydrophobic Surfaces
,”
ASME Trans. J. Heat Transfer
0022-1481,
121
, pp.
964
970
.
10.
Bertier
,
J.
, 2008,
Microdrops and Digital Micro-Fluidics
,
William Andrew
,
Norwich, NY
, pp.
130
135
.
11.
Sikarwar
,
B. S.
,
Muralidhar
,
K.
, and
Khandekar
,
S.
, 2010, “
Flow and Thermal Fields in a Pendant Droplet Moving on Lyophobic Surface
,”
14th International Heat Transfer Conference
, Washington, D.C., Paper No. IHTC14-22520.
12.
Leach
,
R. N.
,
Stevens
,
F.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
, 2006, “
Experiments and Simulations of Nucleate and Growth of Water Drops in a Cooling System
,”
Langmuir
0743-7463,
22
, pp.
8864
8872
.
13.
McCormick
,
J. L.
, and
Baer
,
E.
, 1963, “
On the Mechanism of Heat Transfer in Dropwise Condensation
,”
J. Colloid Sci.
0095-8522,
18
, pp.
208
216
.
14.
Bansal
,
G. D.
,
Khandekar
,
S.
, and
Muralidhar
,
K.
, 2009, “
Measurement of Heat Transfer During Dropwise Condensation of Water on Polyethylene
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
13
, pp.
184
201
.
15.
Tartarini
,
P.
,
Lorenzini
,
G.
, and
Randi
,
M. R.
, 1999, “
Experimental Study of Water Droplet on Hot, Non-Porous Surfaces
,”
Heat Mass Transfer
0947-7411,
34
(
6
), pp.
437
447
.
16.
Briscoe
,
B. J.
, and
Galvin
,
K. P.
, 1991, “
The Sliding of Sessile and Pendent Droplets the Critical Condition
,”
J. Colloid Interface Sci.
0021-9797,
52
, pp.
219
229
.
17.
Lawal
,
A.
, and
Brown
,
R. A.
, 1982, “
The Stability of an Inclined Pendent Drop
,”
J. Colloid Interface Sci.
0021-9797,
89
, pp.
332
345
.
18.
Glicksman
,
R. L.
, and
Hunt
,
W. A.
, 1972, “
Numerical Simulation of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
2251
2269
.
19.
Wu
,
W. H.
, and
Maa
,
J. R.
, 1976, “
On the Heat Transfer in Dropwise Condensation
,”
Chem. Eng. J.
0300-9467,
12
, pp.
225
231
.
20.
Maa
,
J. R.
, 1978, “
Drop-Size Distribution and Heat Flux of Dropwise Condensation
,”
Chem. Eng. J.
0300-9467,
16
, pp.
171
176
.
21.
Abu-Orabi
,
M.
, 1998, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
81
87
.
22.
Rose
,
J. W.
, and
Glicksman
,
L. R.
, 1973, “
Dropwise Condensation—The Distribution of Drop Sizes
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
411
425
.
23.
Gose
,
E.
,
Mucciordi
,
A. N.
, and
Baer
,
E.
, 1967, “
Model for Dropwise Condensation on Randomly Distributed Sites
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
15
22
.
24.
Burnside
,
B. M.
, and
Hadi
,
H. A.
, 1999, “
Digital Computer Simulation of Dropwise Condensation From Equilibrium Droplet to Detectable Size
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3137
3146
.
25.
Vemuri
,
S.
, and
Kim
,
K. J.
, 2006, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
649
657
.
26.
Eucken
,
A.
, 1937, “
Energie Und Stoffaustausch an Grenzflächen
,”
Naturwiss.
0028-1042,
25
, pp.
209
218
.
27.
Briscoe
,
B. J.
, and
Galvin
,
K. P.
, 1991, “
Growth With Coalescences During Condensation
,”
Phys. Rev. A
1050-2947,
43
, pp.
1906
1917
.
28.
Rose
,
J. W.
, 1976, “
Further Aspects of Dropwise Condensation Theory
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1363
1370
.
29.
Mu
,
C.
,
Pang
,
J.
, and
Liu
,
T.
, 2008, “
Effect of Surface Topography of Material on Nucleation Site Density of Dropwise Condensation
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
874
880
.
30.
Narhe
,
R.
,
Beysens
,
D.
, and
Nikolayev
,
V. S.
, 2004, “
Contact Line Dynamics in Drop Coalescence and Spreading
,”
Langmuir
0743-7463,
20
, pp.
1213
1221
.
31.
Wu
,
M.
,
Cubaud
,
T.
, and
Ho
,
C. M.
, 2004, “
Scaling Law in a Liquid Drop Coalescence Driven by Surface Tension
,”
Phys. Fluids
1070-6631,
16
(
7
), pp.
L51
L54
.
32.
Liao
,
Q.
,
Zhu
,
X.
,
Xing
,
S. M.
, and
Wang
,
H.
, 2008, “
Visualization Study on Coalescence Between Pair of Water Drops on Inclined Surfaces
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
(
8
), pp.
1647
1654
.
33.
Das
,
A. K.
, and
Das
,
P. K.
, 2009, “
Simulation of Drop Movement of an Inclined Surface Using Smoothed Particle Hydrodynamics
,”
Langmuir
0743-7463,
25
, pp.
11459
11466
.
34.
Sikarwar
,
B. S.
,
Muralidhar
,
K.
, and
Khandekar
,
S.
, 2010, “
Flow and Heat Transfer in a Pendant Liquid Drop on an Inclined Plane
,”
Proceedings of the Ninth ASME Heat and Mass Transfer Conference
, IIT Mumbai, India, Paper No.
345
, pp.
1322
1329
.
35.
Grand
,
N. L.
,
Daerr
,
A.
, and
Limit
,
L.
, 2005, “
Shape and Motion of Drops Sliding Down an Inclined Plane
,”
J. Fluid Mech.
0022-1120,
541
, pp.
253
315
.
36.
Pierce
,
E.
,
Carmona
,
F. J.
, and
Amirfazli
,
A.
, 2008, “
Understanding of Sliding and Contact Angles Results in Tilted Plate Experiments
,”
Colloids Surf., A
0927-7757,
323
, pp.
73
82
.
37.
ElSherbini
,
A. I.
, and
Jacobi
,
A. M.
, 2004, “
Liquid Drops on Vertical and Inclined Surfaces: I. An Experimental Study of Drop Geometry
,”
J. Colloid Interface Sci.
0021-9797,
273
, pp.
556
565
.
38.
Dimitrakopoulos
,
P.
, and
Higdon
,
J. J. L.
, 1999, “
On the Gravitational Displacement of Three-Dimensional Fluid Droplets From Inclined Solid Surfaces
,”
J. Fluid Mech.
0022-1120,
395
, pp.
181
209
.
39.
Korte
,
C. M.
, and
Jacobi
,
A. M.
, 2001, “
Condensate Retention Effects on the Performance of Plain-Fin and Tube Heat Exchangers: Retention Data and Modeling
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
926
936
.
40.
Dussan
,
E. B.
, V
, and
Chow
,
R. T.
, 1983, “
On the Ability of Drops or Bubbles to Stick to Non-Horizontal Surfaces of Solids
,”
J. Fluid Mech.
0022-1120,
137
, pp.
1
29
.
41.
Bouteau
,
M.
,
Cantin
,
S.
,
Benhabib
,
F.
, and
Perrot
,
F.
, 2008, “
Sliding Behavior of Liquid on Tilted Langmuir-Blodgett Surfaces
,”
J. Colloid Interface Sci.
0021-9797,
317
, pp.
247
254
.
42.
ElSherbini
,
A. I.
, and
Jacobi
,
A. M.
, 2004, “
Liquid Drops on Vertical and Inclined Surfaces: II. A Method for Approximating Drop Shapes
,”
J. Colloid Interface Sci.
0021-9797,
273
, pp.
566
575
.
43.
Extrand
,
C. W.
, and
Kumara
,
Y.
, 1995, “
Liquid Drop on an Inclined Plane: The Relation Between Contact Angles, Drop Shape and Retentive Forces
,”
J. Colloid Interface Sci.
0021-9797,
170
, pp.
515
521
.
44.
Sakai
,
M.
,
Hashimoto
,
A.
,
Yoshida
,
N.
,
Suzuki
,
S.
,
Kameshima
,
Y.
, and
Nakajima
,
A.
, 2006, “
Direct Observation of Internal Fluidity in a Water Droplet During Sliding on Hydrophobic Surfaces
,”
Langmuir
0743-7463,
22
, pp.
4906
4909
.
45.
Kim
,
H. Y.
,
Lee
,
H.
, and
Kang
,
B. H.
, 2002, “
Sliding of Drops Down an Inclined Solid Surface
,”
J. Colloid Interface Sci.
0021-9797,
247
, pp.
372
380
.
46.
Sadhal
,
S. S.
, 1997,
Transport Phenomena With Drops and Bubbles
(
Mechanical Engineering Series
),
Springer
,
New York
, pp.
218
230
.
47.
Koch
,
G.
,
Kraft
,
K.
, and
Leipertz
,
A.
, 1998, “
Parameter Study on the Performance of Dropwise Condensation
,”
Int. J. Therm. Sci.
1290-0729,
37
, pp.
539
548
.
You do not currently have access to this content.