The study of thermal transport based on the dual-phase lagging model involves not only the well known thermal properties but also two additional time parameters. Those parameters permit to take into account the thermal inertia and the microstructural interactions of the media in such a way that they establish the nonsimultaneity between temperature changes and heat flux. In the dual-phase lagging model, heat transport phenomena are extremely sensitive not only to the size of each time parameter but also to the relative size of them. In order to obtain useful and reliable results, it is important to develop methodologies for the determination of those time parameters. Additionally it is necessary to count with tools that allow evaluating easily the sensitivity of the temperature and heat to the changes in those time parameters. In this work, a system formed by a semi-infinite layer in thermal contact with a finite one, which is excited by a modulated heat flux, is studied. When the thermal effusivities of the layers are quite different, it is shown that a frequency range can be found in which the normalized amplitude and phase of the spatial component of the oscillatory surface temperature show strong oscillations. This behavior is used to obtain explicit formulas for determining simultaneously the time parameters as well as additional thermal properties of the finite layer, under the framework of the dual-phase lagging model of heat conduction. The limits of the corresponding equations for single-phase lagging models of heat conduction are also discussed.

1.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
London
.
2.
Tikhonov
,
A. N.
, and
Samarskii
,
A. A.
, 1990,
Equations of Mathematical Physics
,
Dover
,
New York
.
3.
Frankel
,
J. I.
,
Vick
,
B.
, and
Ozisik
,
M. N.
, 1987, “
General Formulation and Analysis of Hyperbolic Heat Conduction in Composite Media
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
7
), pp.
1293
1305
.
4.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
(
1
), pp.
41
73
.
5.
Wang
,
L.
,
Zhou
,
X.
, and
Wei
,
X.
, 2008,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer-Verlag
,
Berlin, Heidelberg
.
6.
Cattaneo
,
C.
, 1948, “
Sulla Coduzione del Calore
,”
Atti Semin. Mat. Fis. Univ. Modena
0041-8986,
3
, pp.
83
84
.
7.
Vernotte
,
P.
, 1958, “
Les Paradoxes de la Theorie Continue de L’equation de la Chaleur
,”
Acad. Sci., Paris, C. R.
0001-4036,
246
(
22
), pp.
3154
3155
.
8.
Tzou
,
D. Y.
, 1997,
Macro-to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
New York
.
9.
Tzou
,
D. Y.
, 1989, “
On the Thermal Shock Wave Induced by a Moving Heat Source
,”
ASME J. Heat Transfer
0022-1481,
111
(
2
), pp.
232
238
.
10.
Ho
,
J. -R.
,
Kuo
,
C. -P.
, and
Jiaung
,
W. -S.
, 2003, “
Study of Heat Transfer In Multilayered Structure Within the Framework of Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
1
), pp.
55
69
.
11.
Ramadan
,
K.
, 2009, “
Semi-analytical Solutions for the Dual Phase Lag Heat Conduction in Multilayered Media
,”
Int. J. Therm. Sci.
1290-0729,
48
(
1
), pp.
14
25
.
12.
Al-Huniti
,
N. S.
, and
Al-Nimr
,
M. A.
, 2004, “
Thermoelastic Behavior of a Composite Slab Under a Rapid Dual-Phase-Lag Heating
,”
J. Therm. Stresses
0149-5739,
27
(
7
), pp.
607
623
.
13.
Lee
,
Y. M.
, and
Tsai
,
T. W.
, 2007, “
Ultra-fast Pulse Laser Heating on a Two-Layered Semi-infinite Material With Interfacial Contact Conductance
,”
Int. Commun. Heat Mass Transfer
0735-1933,
34
(
1
), pp.
45
51
.
14.
Liu
,
K. -C.
, 2007, “
Numerical Analysis of Dual-Phase-Lag Heat Transfer in a Layered Cylinder With Nonlinear Interface Boundary Conditions
,”
Comput. Phys. Commun.
0010-4655,
177
(
3
), pp.
307
314
.
15.
Xu
,
M.
, and
Wang
,
L.
, 2005, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
25
), pp.
5616
5624
.
16.
Tzou
,
D. Y.
, 1995, “
Experimental Support for the Lagging Response in Heat Propagation
,”
J. Thermophys. Heat Transfer
0887-8722,
9
(
4
), pp.
686
693
.
17.
Quintanilla
,
R.
, 2002, “
Exponential Stability in the Dual-Phase-Lag Heat Conduction Theory
,”
J. Non-Equilib. Thermodyn.
0340-0204,
27
(
3
), pp.
217
227
.
18.
Tzou
,
D. Y.
, 1995, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
17
), pp.
3231
3240
.
19.
Tzou
,
D. Y.
, 1995, “
A Unified Field Approach for Heat Conduction From Micro- to Macro-Scales
,”
ASME J. Heat Transfer
0022-1481,
117
(
1
), pp.
8
16
.
20.
Tzou
,
D. Y.
, 1992,
Thermal Shock Phenomena Under High-Rate Response in Solids
,
Hemisphere
,
Washington, DC
, Chap. 3.
21.
Khadrawi
,
A. F.
,
Al-Nimr
,
M. A.
, and
Hammad
,
M.
, 2002, “
Thermal Behavior of Perfect and Imperfect Contact Composite Slabs Under the Effect of the Hyperbolic Heat Conduction Model
,”
Int. J. Thermophys.
0195-928X,
23
(
2
), pp.
581
598
.
22.
Almond
,
D. P.
, and
Patel
,
P. M.
, 1996,
Photothermal Science and Techniques
,
Chapman and Hall
,
London
.
23.
McDonald
,
F. A.
, and
Westel
,
G. C.
, Jr.
, 1978, “
Generalized Theory of the Photoacoustic Effect
,”
J. Appl. Phys.
0021-8979,
49
(
4
), pp.
2313
2322
.
24.
Salazar
,
A.
,
Sánchez-Lavega
,
A.
, and
Terrón
,
J. M.
, 1998, “
Effective Thermal Diffusivity of Layered Materials Measured by Modulated Photothermal Techniques
,”
J. Appl. Phys.
0021-8979,
84
(
6
), pp.
3031
3041
.
25.
Pichardo
,
J. L.
, and
Alvarado-Gil
,
J. J.
, 2001, “
Open Photoacoustic Cell Determination of the Thermal Interface Resistance in Two Layer Systems
,”
J. Appl. Phys.
0021-8979,
89
(
7
), pp.
4070
4075
.
26.
Basirat Tabrizi
,
H.
, and
Andarwa
,
S.
, 2009, “
A Method to Measure Time Lag Constants of Heat Conduction Equations
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
(
2
), pp.
186
191
.
27.
Myers
,
G. E.
, 1971,
Analytical Methods in Conduction Heat Transfer
,
McGraw-Hill
,
New York
, pp.
167
172
.
28.
Rohsenow
,
W. M.
, and
Hartnett
,
J. P.
, 1973,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
29.
Salazar
,
A.
, 2003, “
On Thermal Diffusivity
,”
Eur. J. Phys.
0143-0807,
24
(
4
), pp.
351
358
.
30.
Vedavarz
,
A.
,
Kumar
,
S.
, and
Moallemi
,
M. K.
, 1994, “
Significance of Non-Fourier Heat Waves in Conduction
,”
ASME J. Heat Transfer
0022-1481,
116
(
1
), pp.
221
224
.
31.
Sharma
,
K. R.
, 2005,
Damped Wave Transport and Relaxation
,
Elsevier
,
The Netherlands
.
32.
Vargas
,
H.
, and
Miranda
,
L. C. M.
, 1988, “
Photoacoustic and Related Photothermal Techniques
,”
Phys. Rep.
0370-1573,
161
(
2
), pp.
43
101
.
33.
Marín
,
E.
,
Pichardo
,
J. L.
,
Cruz-Orea
,
A.
,
Diaz
,
P.
,
Torres-Delgado
,
G.
,
Delgadillo
,
I.
,
Alvarado-Gil
,
J. J.
,
Mendoza-Alvarez
,
J. G.
, and
Vargas
,
H.
, 1996, “
On the Thermal Characterization of Two-Layer Systems by Means of the Photoacoustic Effect
,”
J. Phys. D
0022-3727,
29
(
4
), pp.
981
986
.
34.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
, 2003, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-homogeneous Inner Structure
,”
Int. J. Therm. Sci.
1290-0729,
42
(
6
), pp.
541
552
.
35.
Antaki
,
P. J.
, 2005, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
0022-1481,
127
(
2
), pp.
189
193
.
36.
Ordóñez-Miranda
,
J.
, and
Alvarado-Gil
,
J. J.
, 2009, “
Thermal Wave Oscillations and Thermal Relaxation Time Determination in a Hyperbolic Heat Transport Model
,”
Int. J. Therm. Sci.
1290-0729,
48
(
11
), pp.
2053
2062
.
You do not currently have access to this content.