Abstract

The Monte Carlo method has found prolific use in the solution of the Boltzmann transport equation for phonons for the prediction of nonequilibrium heat conduction in crystalline thin films. This paper contributes to the state-of-the-art by performing a systematic study of the role of the various phonon modes on thermal conductivity predictions, in particular, optical phonons. A procedure to calculate three-phonon scattering time-scales with the inclusion of optical phonons is described and implemented. The roles of various phonon modes are assessed. It is found that transverse acoustic (TA) phonons are the primary carriers of energy at low temperatures. At high temperatures (T>200K), longitudinal acoustic (LA) phonons carry more energy than TA phonons. When optical phonons are included, there is a significant change in the amount of energy carried by various phonons modes, especially at room temperature, where optical modes are found to carry about 25% of the energy at steady state in silicon thin films. Most importantly, it is found that inclusion of optical phonons results in better match with experimental observations for silicon thin-film thermal conductivity. The inclusion of optical phonons is found to decrease the thermal conductivity at intermediate temperatures (50–200 K) and to increase it at high temperature (>200K), especially when the film is thin. The effect of number of stochastic samples, the dimensionality of the computational domain (two-dimensional versus three-dimensional), and the lateral (in-plane) dimension of the film on the statistical accuracy and computational efficiency is systematically studied and elucidated for all temperatures.

1.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
2.
Lacroix
,
D.
, and
Joulain
,
K.
, and
Lemonnier
,
D.
, 2005, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscale
,”
Phys. Rev. B
0163-1829,
72
, p.
064305
.
3.
Wang
,
T.
, 2007, “
Sub-Micron Thermal Transport in Ultra-Scaled Metal-Oxide Semiconductor Devices
,” Ph.D. thesis, School of Mechanical Engineering, Purdue University, West Lafayette, IN.
4.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
5.
Narumanchi
,
S. V. J.
, 2003, “
Simulation of Heat Transport in Sub-Micron Conduction
,” Ph.D. thesis, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA.
6.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
, 2005, “
Review of Multi-Scale Simulation in Sub-Micron Heat Transfer
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
3
, pp.
5
32
.
7.
Sinha
,
S.
, and
Goodson
,
K. E.
, 2005, “
Review: Multiscale Thermal Modeling in Nanoelectronics
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
3
, pp.
107
133
.
8.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
9.
Peterson
,
R. B.
, 1994, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
815
822
.
10.
Jeng
,
M. S.
,
Yang
,
R. G.
,
Song
,
D.
, and
Chen
,
G.
, 2008, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
0022-1481,
130
(
4
), p.
042410
.
11.
Randrianalisoa
,
J.
, and
Baillis
,
D.
, 2008, “
Monte Carlo Simulation of Cross-Plane Thermal Conductivity of Nanostructured Porous Silicon Films
,”
J. Appl. Phys.
0021-8979,
103
(
5
), p.
053502
.
12.
Randrianalisoa
,
J.
, and
Baillis
,
D.
, 2008, “
Monte Carlo Simulation of Steady-State Microscale Phonon Heat Transport
,”
ASME J. Heat Transfer
0022-1481,
130
(
7
), p.
072404
.
13.
Heino
,
P.
, 2007, “
Thermal Conduction Simulations in the Nanoscale
,”
J. Comput. Theor. Nanosci.
1546-1955,
4
(
5
), pp.
896
927
.
14.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
,
New York
.
15.
Kazan
,
M.
,
Pereira
,
S.
,
Coutinho
,
J.
,
Correia
,
M. R.
, and
Masri
,
P.
, 2008, “
Role of Optical Phonon in Ge Thermal Conductivity
,”
Appl. Phys. Lett.
0003-6951,
92
(
21
), p.
211903
.
16.
Asheghi
,
M.
, 2000, “
Thermal Transport Properties of Silicon Films
,” Ph.D. thesis, Stanford University, Standford, CA.
17.
Han
,
Y. J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperature
,”
Phys. Rev. B
0163-1829,
48
(
9
), pp.
6033
6042
.
18.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0096-8250,
132
(
6
), pp.
2461
2471
.
19.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
, 2005, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1129
1137
.
20.
Aubry
,
S.
,
Kimmer
,
C.
,
Schelling
,
P.
,
Piekos
,
E.
, and
Phinney
,
L.
, 2007, “
Phonon-Mediated Thermal Transport in Micro-Systems
,”
Proceedings of the Materials Research Society Fall 2007 Meeting
, Nov. 28–29, Boston, MA, Paper No. EE1.4.
21.
Majumdar
,
A.
, 1997, “
Microscale Energy Transport in Solids
,”
Microscale Energy Transfer
(
Series in Chemical and Mechanical Engineering
),
C. L.
Tien
,
A.
Majumdar
, and
F.
Gerner
, eds.,
Taylor & Francis
,
London
, pp.
1
95
.
22.
Klemens
,
P. G.
, 1969, “
Theory of Thermal Conductivity of Solids
,”
Thermal Conductivity
, Vol.
1
,
Academic Press
,
London
, pp.
1
68
.
23.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
0003-6951,
74
(
20
), pp.
3005
3007
.
24.
Brockhouse
,
B. N.
, 1959, “
Lattice Vibrations in Silicon and Germanium
,”
Phys. Rev. Lett.
0031-9007,
2
(
6
), pp.
256
258
.
25.
Dolling
,
G.
, 1963, “
Lattice Vibrations in Crystals With the Diamond Structure
,” Symposium
on Inelastic Scattering of Neutrons in Solids and Liquids
.
26.
Ghatak
,
A. K.
, and
Kothari
,
L. S.
, 1972,
An Introduction to Lattice Dynamics
,
Addison-Wesley
,
London
.
27.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Oxford University Press
,
London, UK
.
28.
Chung
,
J. D.
,
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Role of Phonon Dispersion in Lattice Thermal Conductivity Analysis
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
376
380
.
29.
Pop
,
E.
, 2004, “
Self-Heating and Scaling of Thin Body Transistors
,” Ph.D. thesis, Department of Electrical Engineering, Stanford University, Stanford, CA.
30.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2004, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
0021-8979,
96
(
9
), pp.
4998
5005
.
31.
Henry
,
A. S.
, and
Chen
,
G.
, 2008, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
1546-1955,
5
(
2
), pp.
141
152
.
32.
Hamilton
,
R. A. H.
, and
Parrott
,
J. E.
, 1969, “
Variational Calculation of Thermal Conductivity of Germanium
,”
Phys. Rev.
0096-8250,
178
(
3
), pp.
1284
1292
.
33.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C.
, 2008, “
Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2008
, Orlando, FL, pp.
1006
1017
.
34.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
, and
Mingo
,
N.
, 2007, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
231922
.
You do not currently have access to this content.