An experimental technique based on the thermal wave approach for measuring the thermal conductivity of liquids is developed in this paper. A stainless steel strip functions as both a heating element and a sealing cover for a chamber containing a test liquid. A periodic current passing through this metal strip generates a periodic Joule heating source. An infrared detector measures the temperature response at the front surface of the stainless steel strip. The phase and magnitude of the temperature response with respect to the heating signal were measured by a lock-in amplifier at various frequencies from 22 Hz to 502 Hz. A one-dimensional, two-layered transient heat conduction model was developed to predict the temperature response on the front surface of the stainless steel strip. The phase information from this temperature response shows high sensitivity to the change in thermal properties of the liquid layer and is employed to match experimental data to find the thermal properties of the test liquid. The measured thermal conductivities of water and ethylene glycol agree quite well with the data from literature and support the validity of this measurement technique. An aqueous fluid consisting of gold nanoparticles is tested and anomalous thermal conductivity enhancement is observed. A discrepancy in the thermal transport behavior between pure liquids and nanofluids is suggested from our experimental results.

1.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
0913-946X,
7
(
4
), pp.
227
233
.
2.
Choi
,
U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles, Developments and Applications of Non-Newtonian Flows
,”
D. A.
Siginer
and
H. P.
Wang
, eds.,
American Society of Mechanical Engineers
,
New York
, FED-Vol.
231
/MD-Vol. 66, pp.
99
105
.
3.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
4.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2006, “
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids
,”
Int. J. Thermophys.
0195-928X,
27
, pp.
569
580
.
5.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2006, “
Determination of the Effective Thermal Diffusivity of Nanofluids by the Double Hot-Wire Technique
,”
J. Phys. D
0022-3727,
39
, pp.
5316
5322
.
6.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
Yip
,
S.
, 2007, “
Mean-Field Versus Microconvection Effects in Nanofluids Thermal Conduction
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
095901
.
7.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
8.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
, p.
084308
.
9.
Wang
,
Z. L.
,
Tang
,
D. W.
,
Liu
,
S.
,
Zheng
,
X. H.
, and
Araki
,
N.
, 2007, “
Thermal-Conductivity and Thermal-Diffusivity Measurements of Nanofluids by 3ω Method and Mechanism Analysis of Heat Transport
,”
Int. J. Thermophys.
0195-928X,
28
, pp.
1255
1268
.
10.
Liu
,
M.
,
Lin
,
M.
,
Tsai
,
C. Y.
, and
Wang
,
C. C.
, 2006, “
Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3028
3033
.
11.
Eastman
,
J. A.
,
Choi
,
S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
12.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nano-Tube Suspension
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
13.
Liu
,
M. S.
,
Lin
,
M.
,
Huang
,
I. T.
, and
Wang
,
C. C.
, 2006, “
Enhancement of Thermal Conductivity With CuO for Nanofluids
,”
Chem. Eng. Technol.
0930-7516,
29
, pp.
72
77
.
14.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
15.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
16.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
617
623
.
17.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
18.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
19.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
, 2005, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2926
2932
.
20.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2008, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1431
1438
.
21.
Hong
,
K. S.
,
Hong
,
T. K.
, and
Yang
,
H. S.
, 2006, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
,
88
, p.
031901
. 0002-7820
22.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
23.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
465
477
.
24.
Maxwell
,
J. C.
, 1873,
Electricity and Magnetism
,
Clarendon
,
Oxford, UK
.
25.
Czarnetzki
,
W.
, and
Roetzel
,
W.
, 1995, “
Temperature Oscillation Techniques for Simultaneous Measurement of Thermal Diffusivity and Conductivity
,”
Int. J. Thermophys.
0195-928X,
16
, pp.
413
423
.
26.
Bhattacharya
,
P.
,
Nara
,
S.
,
Vijayan
,
P.
,
Tang
,
T.
,
Lai
,
W.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Song
,
D. W.
, and
Wang
,
J.
, 2006, “
Characterization of the Temperature Oscillation Technique to Measure the Thermal Conductivity of Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2950
2956
.
27.
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Bergman
,
T. L.
, 2006,
Fundamental of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
28.
Jackson
,
J. E.
,
Borgmeyer
,
B. V.
,
Wilson
,
C. A.
,
Cheng
,
P.
, and
Bryan
,
J. E.
, 2006, “
Characteristics of Nucleate Boiling With Gold Nanoparticles in Water
,”
Proceedings of IMECE2006, ASME International Mechanical Engineering Congress and Exposition
, Chicago, IL, Nov. 5–10.
29.
Indermuehle
,
S. W.
, and
Peterson
,
R. B.
, 1999, “
A Phase-Sensitive Technique for the Thermal Characterization of Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
528
536
.
30.
Myers
,
G. E.
, 1998,
Analytical Methods in Conduction Heat Transfer
, 2nd ed.,
AMCHT
,
Madison, WI
.
You do not currently have access to this content.