The heat transfer performance of two microjet arrays was investigated using degassed deionized water and air. The inline jet arrays had diameters of 54μm and 112μm, a spacing of 250μm, a standoff of 200μm (S/d=2.2 and 4.6, H/d=1.8 and 3.7), and jet-to-heater area ratios from 0.036 to 0.16. Average heat transfer coefficients with deionized water were obtained for 150Red3300 and ranged from 80,000W/m2K to 414,000W/m2K. A heat flux of 1110W/cm2 was attained with 23°C inlet water and an average surface temperature of 50°C. The Reynolds number range for the same arrays with air was 300Red4900 with average heat transfer coefficients of 2500W/m2K to 15,000W/m2K. The effect of the Mach number on the area-averaged Nusselt number was found to be negligible. The data were compared with available correlations for submerged jet array heat transfer.

1.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
2.
Viskanta
,
R.
, 1993, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
0894-1777,
6
(
2
), pp.
111
134
.
3.
Webb
,
B. W.
, and
Ma
,
C. -F.
, 1995, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
26
, pp.
105
217
.
4.
Garimella
,
S. V.
, and
Schroeder
,
V. P.
, 2001, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
1043-7398,
123
(
3
), pp.
165
172
.
5.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
0022-1481,
103
(
2
), pp.
337
342
.
6.
Kercher
,
D. M.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
0022-0825,
92
(
1
), pp.
73
82
.
7.
Robinson
,
A. J.
, and
Schnitzler
,
E.
, 2007, “
An Experimental Investigation of Free and Submerged Miniature Liquid Jet Array Heat Transfer
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
(
1
), pp.
1
13
.
8.
Meola
,
C.
, 2009, “
A New Correlation of Nusselt Number for Impinging Jets
,”
Heat Transfer Eng.
0145-7632,
30
(
3
), pp.
221
228
.
9.
Goodro
,
M.
,
Jongmyung
,
P.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.
, 2007, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
1–2
), pp.
367
380
.
10.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.
, 2007, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
269
280
.
11.
Pence
,
D. V.
,
Boeschoten
,
P. A.
, and
Liburdy
,
J. A.
, 2003, “
Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
447
453
.
12.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
, 1994, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Multiple Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
116
(
2
), pp.
482
486
.
13.
Geers
,
L. F. G.
,
Tummers
,
M. J.
,
Bueninck
,
T. J.
, and
Hanjalic
,
K.
, 2008, “
Heat Transfer Correlation for Hexagonal and In-Line Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
21–22
), pp.
5389
5399
.
14.
Patil
,
V. A.
, and
Narayanan
,
V.
, 2005, “
Spatially Resolved Heat Transfer Rates in an Impinging Circular Microscale Jet
,”
Microscale Thermophys. Eng.
1089-3954,
9
(
2
), pp.
183
197
.
15.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. -M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2004, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
833
842
.
16.
Fabbri
,
M.
, and
Dhir
,
V. K.
, 2005, “
Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,”
ASME J. Heat Transfer
0022-1481,
127
(
7
), pp.
760
769
.
17.
Overholt
,
M. R.
,
McCandless
,
A.
,
Kelly
,
K. W.
,
Becnel
,
C. J.
, and
Motakef
,
S.
, 2005, “
Micro-Jet Arrays for Cooling of Electronic Equipment
,”
Proceedings of the Third International Conference on Microchannels and Minichannels
, Toronto, ON, Canada, pp.
249
252
.
18.
Leland
,
J. E.
,
Ponnappan
,
R.
, and
Klasing
,
K. S.
, 2002, “
Experimental Investigation of an Air Microjet Array Impingement Cooling Device
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
2
), pp.
187
192
.
19.
Michna
,
G. J.
,
Browne
,
E. A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2009, “
Single-Phase Microscale Jet Stagnation Point Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
131
(
11
), p.
111402
.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.