The heat transfer performance of two microjet arrays was investigated using degassed deionized water and air. The inline jet arrays had diameters of and , a spacing of , a standoff of ( and 4.6, and 3.7), and jet-to-heater area ratios from 0.036 to 0.16. Average heat transfer coefficients with deionized water were obtained for and ranged from to . A heat flux of was attained with inlet water and an average surface temperature of . The Reynolds number range for the same arrays with air was with average heat transfer coefficients of to . The effect of the Mach number on the area-averaged Nusselt number was found to be negligible. The data were compared with available correlations for submerged jet array heat transfer.
Issue Section:
Research Papers
1.
Martin
, H.
, 1977, “Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,” Adv. Heat Transfer
0065-2717, 13
, pp. 1
–60
.2.
Viskanta
, R.
, 1993, “Heat Transfer to Impinging Isothermal Gas and Flame Jets
,” Exp. Therm. Fluid Sci.
0894-1777, 6
(2
), pp. 111
–134
.3.
Webb
, B. W.
, and Ma
, C. -F.
, 1995, “Single-Phase Liquid Jet Impingement Heat Transfer
,” Adv. Heat Transfer
0065-2717, 26
, pp. 105
–217
.4.
Garimella
, S. V.
, and Schroeder
, V. P.
, 2001, “Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,” ASME J. Electron. Packag.
1043-7398, 123
(3
), pp. 165
–172
.5.
Florschuetz
, L. W.
, Truman
, C. R.
, and Metzger
, D. E.
, 1981, “Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,” ASME J. Heat Transfer
0022-1481, 103
(2
), pp. 337
–342
.6.
Kercher
, D. M.
, and Tabakoff
, W.
, 1970, “Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,” ASME J. Eng. Power
0022-0825, 92
(1
), pp. 73
–82
.7.
Robinson
, A. J.
, and Schnitzler
, E.
, 2007, “An Experimental Investigation of Free and Submerged Miniature Liquid Jet Array Heat Transfer
,” Exp. Therm. Fluid Sci.
0894-1777, 32
(1
), pp. 1
–13
.8.
Meola
, C.
, 2009, “A New Correlation of Nusselt Number for Impinging Jets
,” Heat Transfer Eng.
0145-7632, 30
(3
), pp. 221
–228
.9.
Goodro
, M.
, Jongmyung
, P.
, Ligrani
, P.
, Fox
, M.
, and Moon
, H.
, 2007, “Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,” Int. J. Heat Mass Transfer
0017-9310, 50
(1–2
), pp. 367
–380
.10.
Park
, J.
, Goodro
, M.
, Ligrani
, P.
, Fox
, M.
, and Moon
, H.
, 2007, “Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,” ASME J. Turbomach.
0889-504X, 129
(2
), pp. 269
–280
.11.
Pence
, D. V.
, Boeschoten
, P. A.
, and Liburdy
, J. A.
, 2003, “Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer
,” ASME J. Heat Transfer
0022-1481, 125
(3
), pp. 447
–453
.12.
Womac
, D. J.
, Incropera
, F. P.
, and Ramadhyani
, S.
, 1994, “Correlating Equations for Impingement Cooling of Small Heat Sources With Multiple Circular Liquid Jets
,” ASME J. Heat Transfer
0022-1481, 116
(2
), pp. 482
–486
.13.
Geers
, L. F. G.
, Tummers
, M. J.
, Bueninck
, T. J.
, and Hanjalic
, K.
, 2008, “Heat Transfer Correlation for Hexagonal and In-Line Arrays of Impinging Jets
,” Int. J. Heat Mass Transfer
0017-9310, 51
(21–22
), pp. 5389
–5399
.14.
Patil
, V. A.
, and Narayanan
, V.
, 2005, “Spatially Resolved Heat Transfer Rates in an Impinging Circular Microscale Jet
,” Microscale Thermophys. Eng.
1089-3954, 9
(2
), pp. 183
–197
.15.
Wang
, E. N.
, Zhang
, L.
, Jiang
, L.
, Koo
, J. -M.
, Maveety
, J. G.
, Sanchez
, E. A.
, Goodson
, K. E.
, and Kenny
, T. W.
, 2004, “Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,” J. Microelectromech. Syst.
1057-7157, 13
(5
), pp. 833
–842
.16.
Fabbri
, M.
, and Dhir
, V. K.
, 2005, “Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,” ASME J. Heat Transfer
0022-1481, 127
(7
), pp. 760
–769
.17.
Overholt
, M. R.
, McCandless
, A.
, Kelly
, K. W.
, Becnel
, C. J.
, and Motakef
, S.
, 2005, “Micro-Jet Arrays for Cooling of Electronic Equipment
,” Proceedings of the Third International Conference on Microchannels and Minichannels
, Toronto, ON, Canada, pp. 249
–252
.18.
Leland
, J. E.
, Ponnappan
, R.
, and Klasing
, K. S.
, 2002, “Experimental Investigation of an Air Microjet Array Impingement Cooling Device
,” J. Thermophys. Heat Transfer
0887-8722, 16
(2
), pp. 187
–192
.19.
Michna
, G. J.
, Browne
, E. A.
, Peles
, Y.
, and Jensen
, M. K.
, 2009, “Single-Phase Microscale Jet Stagnation Point Heat Transfer
,” ASME J. Heat Transfer
0022-1481, 131
(11
), p. 111402
.20.
Kline
, S. J.
, and McClintock
, F. A.
, 1953, “Describing Uncertainties in Single-Sample Experiments
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 75
(1
), pp. 3
–8
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.