It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching 300W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.

1.
Bohr
,
M. T.
, 1995, “
Interconnect Scaling—The Real Limiter to High Performance ULSI
,”
Tech. Dig. - Int. Electron Devices Meet.
0163-1918,
1995
, pp.
241
244
.
2.
Yamashita
,
K.
, and
Odanaka
,
S.
, 1997, “
Interconnect Scaling Scenario Using a Chip Level Interconnect Model
,”
VLSI Technology Symposium
, pp.
53
54
.
3.
Banerjee
,
K.
,
Souri
,
S. J.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
, 2001, “
3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration
,”
Proc. IEEE
0018-9219,
89
(
5
), pp.
602
633
.
4.
Semiconductor Industry Association
, 2006, “
The International Technology Roadmap for Semiconductors (ITRS)
.”
5.
Rahman
,
A.
, and
Reif
,
R.
, 2000, “
System-Level Performance Evaluation of Three-Dimensional Integrated Circuits
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
1063-8210,
8
(
6
), pp.
671
678
.
6.
Lee
,
Y. -J.
,
Kim
,
Y. J.
,
Huang
,
G.
,
Bakir
,
M.
,
Joshi
,
Y.
,
Fedorov
,
A.
, and
Lim
,
S. K.
, 2009, “
Co-Design of Signal, Power, and Thermal Distribution Networks for 3D ICs
,”
Proceedings Design, Automation and Test in Europe
, Nice, France, pp.
610
615
.
7.
Im
,
S.
, and
Banerjee
,
K.
, 2000, “
Full Chip Thermal Analysis of Planar (2-D) and Vertically Integrated (3-D) High Performance ICs
,”
Tech. Dig. - Int. Electron Devices Meet.
0163-1918,
2000
, pp.
727
730
.
8.
Huang
,
W.
,
Ghosh
,
S.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
,
Skadron
,
K.
, and
Stan
,
M. R.
, 2006, “
HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI Design
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
1063-8210,
14
(
5
), pp.
501
513
.
9.
Huang
,
W.
,
Stan
,
M. R.
,
Skadron
,
K.
,
Sankaranarayanan
,
K.
,
Ghosh
,
S.
, and
Velusamy
,
S.
, 2004, “
Compact Thermal Modelling for Temperature-Aware Design
,”
Design Automation Conference
, San Diego, CA, pp.
878
883
.
10.
Borkar
,
S.
, 1999, “
Design Challenges of Technology Scaling
,”
IEEE MICRO
0272-1732,
19
(
4
), pp.
23
29
.
11.
Gunther
,
S.
,
Binns
,
F.
,
Carmean
,
D. M.
, and
Hall
,
J. C.
, 2001, “
Managing the Impact of Increasing Microprocessor Power Consumption
,”
Intel Technol. J.
1535-864X,
5
(
1
), pp.
1
9
.
12.
Stan
,
M. R.
,
Skadron
,
K.
,
Barcella
,
M.
,
Huang
,
W.
,
Sankaranarayanan
,
K.
, and
Velusamy
,
S.
, 2003, “
HotSpot: A Dynamic Compact Thermal Model at the Processor-Architecture Level
,”
Microelectron. J.
0026-2692,
34
(
12
), pp.
1153
1165
.
13.
Skadron
,
K.
,
Stan
,
M. R.
,
Sankaranarayanan
,
K.
,
Huang
,
W.
,
Velusamy
,
S.
, and
Tarjan
,
D.
, 2004, “
Temperature-Aware Microarchitecture: Modeling and Implementation
,”
ACM Trans., Architecture and Code Optimization
,
1
(
1
), pp.
94
125
.
14.
Skadron
,
K.
,
Stan
,
M. R.
,
Huang
,
W.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
, and
Tarjan
,
D.
, 2003, “
Temperature-Aware Computer Systems: Opportunities and Challenges
,”
IEEE MICRO
0272-1732,
23
(
6
), pp.
52
61
.
15.
Skadron
,
K.
,
Stan
,
M. R.
,
Huang
,
W.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
, and
Tarjan
,
D.
, 2003, “
Temperature-Aware Microarchitecture
,”
Proceedings of the 30th Annual International Symposium on Computer Architecture
, pp.
2
13
.
16.
Kleiner
,
M. B.
,
Kühn
,
S. A.
,
Ramm
,
P.
, and
Weber
,
W.
, 1995, “
Thermal Analysis of Vertically Integrated Circuits
,”
Tech. Dig. - Int. Electron Devices Meet.
0163-1918,
1995
, pp.
487
490
.
17.
Rahman
,
A.
, and
Reif
,
R.
, 2001, “
Thermal Analysis of Three-Dimensional (3-D) Integrated Circuits (ICs)
,”
Proceedings of the IITC
, pp.
157
159
.
18.
Loi
,
G. L.
,
Agrawal
,
B.
,
Srivastava
,
N.
,
Lin
,
S. -C.
,
Sherwood
,
T.
, and
Banerjee
,
K
., 2006, “
A Thermally-Aware Performance Analysis of Vertically Integrated (3-D) Processor-Memory Hierarchy
,”
Proceedings of the Design Automation Conference
, San Francisco, CA, pp.
991
996
.
19.
Bintoro
,
J. S.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
, 2005, “
A Closed-Loop Electronics Cooling by Implementing Single Phase Impinging Jet and Mini Channels Heat Exchanger
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
2740
2753
.
20.
Leland
,
J. E.
,
Ponnappan
,
R.
, and
Klasing
,
K. S.
, 2002, “
Experimental Investigation of an Air Microjet Array Impingement Cooling Devices
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
2
), pp.
187
192
.
21.
Pal
,
A.
,
Joshi
,
Y. K.
,
Beitelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
,
T. M.
, 2002, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
4
), pp.
601
607
.
22.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
, 2005, “
Miniature Loop Heat Pipes-A Promising Means For Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
290
296
.
23.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J. M.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2002, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
3
), pp.
347
355
.
24.
Wei
,
Y.
, and
Joshi
,
Y.
, 2004, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
60
66
.
25.
Fan
,
X.
,
Zeng
,
G.
,
LaBounty
,
C.
,
Bowers
,
J. E.
,
Croke
,
E.
,
Ahn
,
C. C.
,
Huxtable
,
S.
,
Majumdar
,
A.
, and
Shakouri
,
A.
, 2001, “
SiGeC/Si Superlattice Microcoolers
,”
Appl. Phys. Lett.
0003-6951,
78
(
11
), pp.
1580
1582
.
26.
Mongia
,
R.
,
Masahiro
,
K.
,
DiStefano
,
E.
,
Barry
,
J.
,
Chen
,
W.
,
Izenson
,
M.
,
Possamai
,
F.
,
Zimmermann
,
A.
, and
Mochizuki
,
M.
, 2006, “
Small Scale Refrigeration System for Electronics Cooling Within a Notebook Computer
,”
Proceedings of the ITHERM
, San Diego, CA, pp.
751
758
.
27.
Kim
,
Y. J.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
, 2008, “
An Absorption Based Miniature Heat Pump System for Electronics Cooling
,”
Int. J. Refrig.
0140-7007,
31
, pp.
23
33
.
28.
Koo
,
J. -M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2005, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
49
58
.
29.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
, 2008, “
Forced Convective Interlayer Cooling in Vertically Integrated Packages
,”
Proceedings of the ITHERM
, Las Vegas, NV, pp.
1114
1125
.
30.
Sekar
,
D.
,
King
,
C.
,
Dang
,
B.
,
Spencer
,
T.
,
Thacker
,
H.
,
Joseph
,
P.
,
Bakir
,
M. S.
, and
Meindl
,
J. D.
, 2008, “
A 3D-IC Technology With Integrated Microchannel Cooling
,”
International Interconnect Technology Conference
, Burlingame, CA, pp.
13
15
.
31.
Bakir
,
M. S.
,
King
,
C.
,
Sekar
,
D.
,
Thacker
,
H.
,
Dang
,
B.
,
Huang
,
B.
,
Naeemi
,
A.
, and
Meindle
,
J. D.
, 2008, “
3D Heterogeneous Integrated Systems: Liquid Cooling, Power Delivery, and Implementation
,”
Custom Integrated Circuits Conference
, San Jose, CA, pp.
663
670
.
32.
George
,
V.
,
Jahagirdar
,
S.
,
Tong
,
C.
,
Smits
,
K.
,
Damaraju
,
S.
,
Siers
,
S.
,
Naydenov
,
V.
,
Khondker
,
T.
,
Sakar
,
S.
, and
Singh
,
P.
, 2007, “
Penryn: 45-nm Next Generation Intel Core 2 Processor
,”
IEEE Asian Solid-State Circuits Conference
, Jeju, Korea, pp.
14
17
.
33.
Healy
,
M.
, and
Lim
,
S. K.
, 2009, “A Study of Stacking Limit and Scaling in 3D ICs: An Interconnect Perspective,” IEEE Electronic Components and Technology Conference, pp. 1213–1220.
34.
Dang
,
B.
,
Bakir
,
M. S.
, and
Meindl
,
J. D.
, 2006, “
Integrated Thermal-Fluidic I/O Interconnect for an On-Chip Microchannel Heat Sink
,”
IEEE Electron Device Lett.
0741-3106,
27
(
2
), pp.
117
119
.
35.
Garimella
,
S.
,
Dowling
,
W. J.
,
Van der Veen
,
M.
, and
Killion
,
J. D.
, 2001, “
The Effect of Simultaneously Developing Flow on Heat Transfer in Rectangular Tubes
,”
Heat Transfer Eng.
0145-7632,
22
, pp.
12
25
.
36.
Lazarek
,
G. M.
, and
Black
,
S. H.
, 1982, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
7
), pp.
945
960
.
37.
Tran
,
T. N.
,
Wambsganss
,
M. W.
,
Chyu
,
M. C.
, and
France
,
D. M.
, 1997, “
A Correlation for Nucleate Flow Boiling in Small Channels
,”
Compact Heat Exchangers for the Process Industries
,
R. K.
Shah
, ed.,
Begel House
,
New York
, pp.
353
363
.
38.
Lee
,
H. J.
, and
Lee
,
Y. L.
, 2001, “
Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels With Low Aspect Ratios
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
2043
2062
.
39.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
, 2002, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
53
64
.
40.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
927
941
.
41.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II-Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
941
955
.
42.
Lin
,
S.
,
Kew
,
P. A.
, and
Cornwell
,
K.
, 2001, “
Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube
,”
Int. J. Refrig.
0140-7007,
24
, pp.
51
56
.
43.
Blasius
,
H.
, 1913, “Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten,” Forschungsarbeiten des Ver, Deutsh. Ing., Paper No. 131.
44.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part I-Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
928
940
.
45.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
, pp.
39
48
.
46.
Zivi
,
S. M.
, 1964, “
Estimation of Steady State Steam Void Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
0022-1481,
86
, pp.
247
252
.
47.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
48.
McLinden
,
M. O.
,
Klein
,
S.
,
Lemmon
,
E.
, and
Peskin
,
A.
, 1998,
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), Version 6.0
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
49.
Zhang
,
L.
,
Koo
,
J. -M.
,
Jiang
,
L.
,
Ashegi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
, 2002, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
1057-7157,
11
(
1
), pp.
12
19
.
50.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
, 2005, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single Phase Cooling of Computer Chips
,”
Proceedings of the 21st IEEE Semi-Therm Symposium
, San Jose, CA, pp.
8
15
.
51.
Collier
,
J. G.
, 1981,
Convective Boiling and Condensation
, 2nd ed.,
McGraw-Hill
,
New York
, p.
37
.
52.
Sahu
,
V.
,
Joshi
,
Y.
, and
Fedorov
,
A.
, 2008, “
Hybrid Solid State/Fluidic Cooling for Hotspot Removal
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, pp.
626
631
.
53.
Narayanan
,
S.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
, 2009, “
Gas-assisted Thin-Film Evaporation From Confined Spaces for Dissipation of High Heat Fluxes
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
13
(
1
), pp.
30
53
.
54.
Green
,
C.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
, 2009, “
Fluid-to-Fluid Spot-to-Spreader (F2/S2) Hybrid Heat Sink for Integrated Chip-Level and Hotspot-Level Thermal Management
,”
ASME J. Electron. Packag.
1043-7398,
131
(
2
), p.
025002
.
You do not currently have access to this content.