Micro-electromechanical systems and nano-electromechanical systems have attracted a great deal of attention in recent years. The flow and heat transfer behaviors of micromachines for separation applications are usually different from that of macro counterparts. In this paper, heat and mass transfer characteristics of rarefied nitrogen gas flows in microchannels are investigated using direct simulation Monte Carlo with improved pressure boundary conditions. The influence of aspect ratio and wall temperature on mass flowrate and wall heat flux in microchannels are studied parametrically. In order to examine the aspect ratio effect on heat and mass transfer behaviors, the wall temperature is set constant at 350 K and the aspect ratio of the microchannel varies from 5 to 20. The results show that as the aspect ratio increases, the velocity of the flow decreases, so does the mass flowrate. In a small aspect ratio channel, the heat transfer occurs throughout the microchannel; as the aspect ratio of the microchannel increases, the region of thermal equilibrium extends. To investigate the effects of wall temperature (Tw) on the mass flowrate and wall heat flux in a microchannel, the temperature of the incoming gas flow (Tin) is set constant at 300 K and the wall temperature varies from 200 K to 800 K while the aspect ratio is remained unchanged. Results show that majority of the wall heat flux stays within the channel entrance region and drops to nearly zero at the halfway in the channel. When Tw<Tin, under the restriction of pressure-driven condition and continuity of pressure, the molecular number density of the flow decreases along the flow direction after a short increase at the entrance region. When Tw>Tin, the molecular number density of the flow drops rapidly near the inlet and the temperature of the gas flow increases along the channel. As Tw increases, the flow becomes more rarefied, the mass flowrate decreases, and the resistance at the entrance region increases. Furthermore, when Tw>Tin, a sudden jump of heat transfer flux and temperature are observed at the exit region of the channel.

1.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
, 1994, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Multiple Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
482
486
.
2.
Darabi
,
J.
, and
Ekula
,
K.
, 2003, “
Development of A Chip-Integrated Micro Cooling Device
,”
Microelectron. J.
0026-2692,
34
, pp.
1067
1074
.
3.
Amon
,
C. H.
,
Murthyj
,
Y.
, and
Yao
,
S. C.
, 2001, “
MEMS Enabled Thermal Management of High Heat Flux Devices EDIFICE: Embedded Droplet Impingement for Integrated Cooling of Electronics
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
231
242
.
4.
Roy
,
S.
,
Raju
,
R.
, and
Chuang
,
H. F.
, 2003, “
Modeling Gas Flow Through Microchannels and Nanopores
,”
J. Appl. Phys.
0021-8979,
93
(
8
), pp.
4870
4879
.
5.
Yang
,
J. M.
,
Ho
,
C. M.
,
Yang
,
X.
, and
Tai
,
Y. C.
, 2001, “
Micromachined Particle Filter With Low Power Dissipation
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
899
908
.
6.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J.
, 1991, “
Gas and Liquid Flow in Small Channel
,”
Winter Annual Meeting of the American Society of Mechanical Engineers
,
ASME
,
New York
, Vol.
32
, pp.
49
60
.
7.
Liu
,
J.
,
Tai
,
Y.
, and
Ho
,
C. M.
, 1995, “
MEMS for Pressure Distribution Studies of Gaseous Flows in Microchannels
,”
Proceedings of IEEE Micro Electro Mechanical Systems (MEMS)
,
IEEE
,
New York
, pp.
209
215
.
8.
Chen
,
C. S.
,
Lee
,
S. M.
, and
Sheu
,
J. D.
, 1998, “
Numerical Analysis of Gas Flow in Microchannels
,”
Numer. Heat Transfer, Part A
1040-7782,
33
(
7
), pp.
749
762
.
9.
Xue
,
H.
,
Fan
,
Q.
, and
Shu
,
C.
, 2000, “
Prediction of Microchannel Flows Using Direct Simulation Monte Carlo
,”
Probab. Eng. Mech.
0266-8920,
15
, pp.
213
219
.
10.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1994, “
Gaseous Flow in Microchannels
,”
International Mechanical Engineering Congress and Exposition
, FED-Vol.
197
,
ASME
,
New York
, pp.
57
65
.
11.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
, pp.
167
178
.
12.
Pong
,
K.
,
Ho
,
C.
,
Liu
,
J.
, and
Tai
,
Y.
, 1994, “
Non-Linear Pressure Distribution in Uniform Microchannels
,”
Application of Microfabrication to Fluid Mechanics
, FED-Vol.
197
,
ASME
,
New York
, pp.
51
56
.
13.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford
.
14.
Bird
,
G. A.
, 1998, “
Recent Advances and Current Challenges for DSMC
,”
Comput. Math. Appl.
0898-1221,
35
, pp.
1
14
.
15.
Oh
,
C. K.
,
Oran
,
E. S.
, and
Sinkovits
,
R. S.
, 1997, “
Computations of High-Speed, High Knudsen Number Microchannel Flows
,”
J. Thermophys. Heat Transfer
0887-8722,
11
, pp.
497
505
.
16.
Chung
,
C. H.
,
Kim
,
S. C.
, and
De
,
K. J.
, 1995, “
Numerical Analysis of Hypersonic Low-Density Scramjet Inlet Flow
,”
J. Spacecr. Rockets
0022-4650,
32
, pp.
60
66
.
17.
Fan
,
J.
, and
Shen
,
C.
, 2001, “
Statistical Simulation of Low-Speed Rarefied Gas Flows
,”
J. Comput. Phys.
0021-9991,
167
, pp.
393
412
.
18.
Sun
,
Q. H.
, and
Boyd
,
I. D.
, 2002, “
A Direct Simulation Method for Subsonic, Microscale Gas Flows
,”
J. Comput. Phys.
0021-9991,
179
, pp.
400
425
.
19.
Mavriplis
,
C.
,
Ahn
,
J. C.
, and
Goulard
,
R.
, 1997, “
Heat Transfer and Flow fields in Short Micro-Channels Using Direct Simulation Monte Carlo
,”
J. Thermophys. Heat Transfer
0887-8722,
11
, pp.
489
496
.
20.
Liou
,
W. W.
, and
Fang
,
Y. C.
, 2001, “
Heat Transfer in Microchannel Devices Using DSMC
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
274
279
.
21.
Le
,
M.
,
Hassan
,
I.
, and
Esmail
,
N.
, 2006, “
DSMC Simulation of Subsonic Flows in Parallel and Series Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1153
1163
.
22.
Kursun
,
U.
, and
Kapat
,
J. S.
, 2007, “
Modeling of Microscale Mass Flows in Transition Regime Part I: Flow Over Backward Facing Steps
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
11
, pp.
15
30
.
23.
Kaplan
,
C. R.
, and
Oran
,
E. S.
, 2002, “
Nonlinear Filtering for Low-Velocity Gaseous Microflows
,”
AIAA J.
0001-1452,
40
, pp.
82
90
.
24.
Piekos
,
E. S.
, and
Breuer
,
K. S.
, 1996, “
Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
464
469
.
25.
Nance
,
R. P.
,
Hash
,
D. B.
, and
Hassan
,
H. A.
, 1998, “
Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices
,”
J. Thermophys. Heat Transfer
0887-8722,
12
, pp.
447
449
.
26.
Wu
,
J. S.
,
Lee
,
F.
, and
Wong
,
S. C.
, 2001, “
Pressure Boundary Treatment in Micromechanical Devices Using the Direct Simulation Monte Carlo Method
,”
JSME Int. J., Ser. B
1340-8054,
44
, pp.
439
450
.
27.
Liou
,
W. W.
, and
Fang
,
Y. C.
, 2000, “
Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions
,”
Comput. Model. Eng. Sci.
1526-1492,
4
, pp.
119
128
.
28.
Wang
,
M. R.
, and
Li
,
Z. X.
, 2004, “
Simulation for Gas Flows in Microgeometries Using the Direct Simulation Monte Carlo Method
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
975
985
.
29.
Ye
,
J. J.
,
Yang
,
J.
, and
Zheng
,
J. Y.
, 2007, “
New Treatment of Pressure Boundary Conditions for DSMC Method in Micro-Channel Flow Simulation
,”
Proceedings of FEDSM2007 Fifth Joint ASME/JSME Fluids Engineering Conference
, San Diego.
30.
Cheng
,
K. B.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2003, “
Parallel and Series Multiple Microchannel Systems
,”
Proceedings of IEEE Micro Electro Mechanical Systems (MEMS)
,
IEEE
,
New York
, pp.
291
294
.
31.
Zhen
,
C. E.
,
Hong
,
Z. C.
,
Lin
,
Y. J.
, and
Hong
,
N. T.
, 2007, “
Comparison of 3-D and 2-D DSMC Heat Transfer Calculations of Low-Speed Short Microchannel Flows
,”
Numer. Heat Transfer, Part A
1040-7782,
52
, pp.
239
250
.
You do not currently have access to this content.