Fibrous material is a complex porous medium and steady test methods are the main test approaches we currently depend on to study the heat transfer properties. The application of unsteady test methods on fibrous material is still not mature. In this paper, some systematic studies are taken to investigate this problem. By analyzing the main factors impacting the test results, it is found that the local heat convection potentially excited by imposing test temperature can be avoided by limiting the internal temperature gradient and the so-called dual-phase lagging effects are negligible so that the feasibility of the unsteady test method is verified via both theoretical analysis and experimental data.
Issue Section:
Porous Media
1.
Pan
, N.
, He
, J.
, and Yu
, J.
, 2007, “Fibrous Materials as Soft Matter
,” Text. Res. J.
0040-5175, 77
(4
), pp. 205
–213
.2.
Layeghi
, M.
, 2008, “Numerical Analysis of Wooden Porous Media Effects on Heat Transfer From a Staggered Tube Bundle
,” ASME J. Heat Transfer
0022-1481, 130
(1
), p. 014501
.3.
Sakamoto
, H.
, and Kulacki
, F. A.
, 2008, “Effective Thermal Diffusivity of Porous Media in the Wall Vicinity
,” ASME J. Heat Transfer
0022-1481, 130
(2
), p. 022601
.4.
Rencz
, M.
, 2003, “New Possibilities in the Thermal Evaluation, Offered by Transient Testing
,” Microelectron. J.
0026-2692, 34
(3
), pp. 171
–177
.5.
Li
, C. H.
, Williams
, W.
, Buongiorno
, J.
, Hu
, L.-W.
, and Peterson
, G. P.
, 2008, “Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids
,” ASME J. Heat Transfer
0022-1481, 130
(4
), p. 042407
.6.
Wang
, M.
, and Pan
, N.
, 2008, “Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,” Int. J. Heat Mass Transfer
0017-9310, 51
(5–6
), pp. 1325
–1331
.7.
Wang
, M.
, Wang
, J.
, Pan
, N.
, and Chen
, S.
, 2007, “Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,” Phys. Rev. E
1063-651X, 75
(3
), p. 036702
.8.
Wang
, M.
, and Pan
, N.
, 2008, “Predictions of Effective Physical Properties of Complex Multiphase Materials
,” Mater. Sci. Eng. R.
0927-796X, 63
(1
), pp. 1
–30
.9.
Christon
, M.
, Burns
, P. J.
, and Sommerfeld
, R. A.
, 1994, “Quasi-Steady Temperature Gradient Metamorphism in Idealized Dry Snow
,” Numer. Heat Transfer, Part A
1040-7782, 25
(3
), pp. 259
–278
.10.
Wang
, J.
, Carson
, J. K.
, North
, M. F.
, and Cleland
, D. J.
, 2006, “A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials
,” Int. J. Heat Mass Transfer
0017-9310, 49
, pp. 3075
–3083
.11.
Rocha
, R. P. A.
, and Cruz
, M. E.
, 2001, “Computation of the Effective Conductivity of Unidirectional Fibrous Composites With an Interfacial Thermal Resistance
,” Numer. Heat Transfer Part A
, 39
(2
), pp. 179
–203
. 0002-782012.
Fu
, S.
, and Mai
, Y.
, 2003, “Thermal Conductivity of Misaligned Short-Fiber-Reinforced Polymer Composites
,” J. Appl. Polym. Sci.
0021-8995, 88
, pp. 1497
–1505
.13.
Zou
, M. Q.
, Yu
, B.
, Zhang
, D.
, and Ma
, Y.
, 2003, “Study on Optimization of Transverse Thermal Conductivities of Unidirectional Composites
,” ASME J. Heat Transfer
0022-1481, 125
(6
), pp. 980
–987
.14.
Ning
, Q. G.
, and Chou
, T. W.
, 1995, “Closed-Form Solutions of the Inplane Effective Thermal-Conductivities of Woven-Fabric Composites
,” Compos. Sci. Technol.
0266-3538, 55
(1
), pp. 41
–48
.15.
Dasgupta
, A.
, Agarwal
, R. K.
, and Bhandarkar
, S. M.
, 1996, “Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties
,” Compos. Sci. Technol.
0266-3538, 56
(3
), pp. 209
–223
.16.
Woo
, S. S.
, Shalev
, I.
, and Barker
, R. L.
, 1994, “Heat and Moisture Transfer Through Nonwoven Fabrics. I. Heat Transfer
,” Text. Res. J.
0040-5175, 64
(3
), pp. 149
–162
.17.
Wang
, M.
, He
, J.
, Yu
, J.
, and Pan
, N.
, 2007, “Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials
,” Int. J. Therm. Sci.
1290-0729, 46
, pp. 848
–855
.18.
Huang
, J.
, 2006, “Sweating Guarded Hot Plate Test Method
,” Polym. Test.
0142-9418, 25
, pp. 709
–716
.19.
Mathis
, N.
, and Chandler
, C.
, 2000, “Orientation and Position Dependant Thermal Conductivity
,” J. Cellular Plastics
, 36
(4
), pp. 327
–336
.20.
Martin
, J. R.
, and Lamb
, G. E. R.
, 1987, “Measurement of Thermal Conductivity of Nonwovens Using a Dynamic Method
,” Text. Res. J.
0040-5175, 57
(12
), pp. 721
–727
.21.
Schneider
, A. M.
, and Hoschke
, B. N.
, 1992, “Heat Transfer Through Moist Fabrics
,” Text. Res. J.
0040-5175, 62
(2
), pp. 61
–66
.22.
Jirsak
, O.
, Gok
, T.
, Ozipek
, B.
, and Pan
, N.
, 1998, “Comparing Dynamic and Static Methods for Measuring Thermal Conductive Properties of Textiles
,” Text. Res. J.
0040-5175, 68
(1
), pp. 47
–56
.23.
Jirsak
, O.
, Sadikoglu
, T. G.
, Ozipek
, B.
, and Pan
, N.
, 2000, “Thermo-Insulating Properties of Perpendicular-Laid Versus Cross-Laid Lofty Nonwoven Fabrics
,” Text. Res. J.
0040-5175, 70
(2
), pp. 121
–128
.24.
Pakdee
, W.
, and Rattanadecho
, P.
, 2006, “Unsteady Effects on Natural Convective Heat Transfer Through Porous Media in Cavity Due to Top Surface Partial Convection
,” Appl. Therm. Eng.
1359-4311, 26
, pp. 2316
–2326
.25.
Sun
, G.
, Yoo
, H. S.
, Zhang
, X. S.
, and Pan
, N.
, 2000, “Radiant Protective and Transport Properties of Fabrics Used by Wildland Firefighters
,” Text. Res. J.
0040-5175, 70
(7
), pp. 567
–573
.26.
Tzou
, D.
, 1995, “A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,” ASME J. Heat Transfer
0022-1481, 117
(1
), pp. 8
–16
.27.
Wang
, L.
, and Wei
, X.
, 2008, “Equivalence Between Dual-Phase-Lagging and Two-Phase-System Heat Conduction Processes
,” Int. J. Heat Mass Transfer
0017-9310, 51
(7–8
), pp. 1751
–1756
.28.
Zuo
, L.
, Zhu
, S.
, and Pan
, N.
, 2009, “Determination of Sample Size for Step-Wise Transient Thermal Tests
,” Polym. Test.
0142-9418, 28
, pp. 307
–314
.29.
Minkowycz
, W.
, Haji-Sheikh
, A.
, and Vafai
, K.
, 1999, “On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,” Int. J. Heat Mass Transfer
0017-9310, 42
(18
), pp. 3373
–3385
.30.
Kubicár
, L.
, and Bohác
, V.
, 2000, “A Step-Wise Method for Measuring Thermophysical Parameters of Materials
,” Meas. Sci. Technol.
0957-0233, 11
, pp. 252
–258
.31.
Kubičár
, L.
, Boháč
, V.
, and Vretenár
, V.
, 2002, “Transient Methods for the Measurement of Thermophysical Properties: The Pulse Transient Method
,” High Temp. - High Press.
0018-1544, 34
(5
), pp. 505
–514
.32.
Milano
, G.
, Scarpa
, F.
, Righini
, F.
, and Bussolino
, G. C.
, 2001, “Ten Years of Parameter Estimation Applied to Dynamic Thermophysical Property Measurements
,” Int. J. Thermophys.
0195-928X, 22
(4
), pp. 1227
–1240
.33.
Papa
, J.
, Albano
, C.
, Baré
, W.
, Navarro
, O.
, Galárraga
, D.
, and Zannin
, F.
, 2002, “An Unsteady State Method for the Measurement of Polymer Thermal Diffusivity I. Development of a Cell
,” Eur. Polym. J.
0014-3057, 38
(10
), pp. 2109
–2117
.34.
Hammerschmidt
, U.
, 2004, “Quasi-Steady State Method: Uncertainty Assessment
,” Int. J. Thermophys.
0195-928X, 25
(4
), pp. 1163
–1185
.35.
Kalogiannakis
, G.
, Hemelrijck
, D. V.
, and Assche
, G. V.
, 2004, “Measurements of Thermal Properties of Carbon/Epoxy and Glass/Epoxy Using Modulated Temperature Differential Scanning Calorimetry
,” J. Compos. Mater.
0021-9983, 38
(2
), pp. 163
–175
.36.
Boháč
, V.
, Dieška
, P.
, and Kubičár
, L.
, 2007, “The Heat Loss Effect at the Measurements by Transient Pulse Method
,” Measurement
0263-2241, 7
(3
), pp. 24
–27
.37.
Gutierrez
, G.
, and Rodriguez
, R.
, 2007, “Conductivity Measurement of Ferrofluid Using Transient Hot Wire Method
,” ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA.38.
Bai
, S.-Y.
, Tang
, Z.-A.
, Huang
, Z.-X.
, Yu
, J.
, and Wang
, J.-Q.
, 2008, “Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique
,” Chin. Phys. Lett.
0256-307X, 25
(2
), pp. 593
–596
.39.
Solorzano
, E.
, Rodriguez-Perez
, M. A.
, and de Saja
, J. A.
, 2008, “Thermal Conductivity of Cellular Metals Measured by the Transient Plane Sour Method
,” Adv. Eng. Mater.
1438-1656, 10
(4
), pp. 371
–377
.40.
Sabuga
, W.
, and Hammerschmidt
, U.
, 1995, “A New Method for the Evaluation of Thermal Conductivity and Thermal Diffusivity From Transient Hot Strip Measurements
,” Int. J. Thermophys.
0195-928X, 16
(2
), pp. 557
–565
.41.
Bohac
, V.
, Kubicar
, L.
, and Vretenar
, V.
, 2003, “Use of the Pulse Transient Method to Investigate the Thermal Properties of Two Porous Materials
,” High Temp. - High Press.
0018-1544, 35–36
(1
), pp. 67
–74
.42.
Holman
, J. P.
, 1997, Heat Transfer
, McGraw-Hill
, New York
.43.
Tye
, R. P.
, Kubičár
, L.
, and Lockmuller
, N.
, 2005, “The Development of a Standard for Contact Transient Methods of Measurement of Thermophysical Properties
,” Int. J. Thermophys.
0195-928X, 26
(6
), pp. 1917
–1938
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.