The development and evaluation of a novel hybrid method for obtaining heat flux measurements is presented. By combining the spatial and temporal temperature measurements of a heat flux sensor, the time response, accuracy, and versatility of the sensor is improved. Sensors utilizing the hybrid method are able to make heat flux measurements on both high and low conductivity materials. It is shown that changing the thermal conductivity of the backing material four orders of magnitude causes only an 11% change in sensor response. The hybrid method also increases the time response of heat flux sensors. The temporal response is shown to increase by up to a factor of 28 compared with a standard spatial sensor. The hybrid method is tested both numerically and experimentally on both high and low conductivity materials and demonstrates significant improvement compared with operating the sensor as a spatial or temporal sensor alone.

1.
Diller
,
T. E.
, 1993, “
Advances in Heat Flux Measurement
,”
Advances in Heat Transfer
,
Academic
,
Boston
, pp.
279
368
.
2.
Hager
,
N. E. J.
, 1965, “
Thin Foil Heat Meter
,”
Rev. Sci. Instrum.
0034-6748,
36
, pp.
1564
1570
.
3.
Hightower
,
T. M.
,
Olivares
,
R. A.
, and
Philippidis
,
D.
, 2008, “
Thermal Capacitance (Slug) Calorimeter Theory Including Heat Losses and Other Decaying Processes
,”
NASA
Report No. TM-200-TM-0215364.
4.
Kidd
,
C. T.
, and
Adams
,
J. C.
, 2001, “
Fast-Response Heat-Flux Sensor for Measurement Commonality in Hypersonic Wind Tunnels
,”
J. Spacecr. Rockets
0022-4650,
38
(
5
), pp.
719
729
.
5.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
, 1986, “
High-Frequency Response Heat-Flux Gauge
,”
Rev. Sci. Instrum.
0034-6748,
57
(
4
), pp.
639
649
.
6.
Liebert
,
C. H.
, 1992, “
High Temperature Plug-Type Heat Flux Gauges
,”
NASA
Report No. TM-105403.
7.
Rooke
,
S.
,
Fralick
,
G.
, and
Liebert
,
C.
, 1998, “
Heat Transfer Analysis of a Plug-Type Heat Flux Gauge
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
4
), pp.
536
542
.
8.
Walker
,
D. G.
, and
Scott
,
E. P.
, 1998, “
Evaluation of Estimation Methods for High Unsteady Heat Fluxes From Surface Measurements
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
4
), pp.
543
551
.
9.
George
,
W. K.
,
Rae
,
W. J.
, and
Woodward
,
S. H.
, 1991, “
An Evaluation of Analog and Numerical Techniques for Unsteady Heat-Transfer Measurements With Thin-Film Gauges in Transient Facilities
,”
Exp. Therm. Fluid Sci.
0894-1777,
4
(
3
), pp.
333
342
.
10.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” AGARDograph No. 165.
11.
Anthony
,
R. J.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 2005, “
High Frequency Surface Heat Flux Imaging of Bypass Transition
,”
ASME J. Turbomach.
0889-504X,
127
(
2
), pp.
241
250
.
12.
Kidd
,
C. T.
,
Nelson
,
C. G.
, and
Scott
,
W. T.
, 1994, “
Extraneous Thermoelectric EMF Effects Resulting From the Press-Fit Installation of Coaxial Thermocouples in Metal Models
,”
40th International Instrumentation Symposium
, pp.
317
335
.
13.
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1995, “
An Advanced Method of Processing Liquid-Crystal Video Signals From Transient Heat-Transfer Experiments
,”
ASME J. Turbomach.
0889-504X,
117
(
1
), pp.
184
189
.
14.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
, 2007, “
Effect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip
,”
ASME J. Turbomach.
0889-504X,
129
(
1
), pp.
151
163
.
15.
Bizzak
,
D. J.
, and
Chyu
,
M. K.
, 1995, “
Use of a Laser-Induced Fluorescence Thermal Imaging-System for Local Jet Impingement Heat-Transfer Measurement
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
2
), pp.
267
274
.
16.
Oishi
,
T.
,
Gorbunov
,
S.
,
Fu
,
J.
, and
Martinez
,
E.
, 2006, “
Thermal Sensor Development and Testing for NASA Entry Probe Thermal Protection Systems
,”
AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV.
17.
Gifford
,
A. R.
,
Hubble
,
D. O.
,
Pullins
,
C. A.
,
Diller
,
T. E.
, and
Huxtable
,
S. T.
, 2009, “
A Durable Heat Flux Sensor for Extreme Temperature and Heat Flux Environments
,”
J. Thermophys. Heat Transfer
0887-8722, in press.
18.
Incropera
,
F.
, and
DeWitt
,
D.
, 2002,
Introduction to Heat Transfer
, 5th ed.,
Wiley
,
New York
.
19.
Gifford
,
A. R.
,
Hoffie
,
A.
, and
Diller
,
T. E.
, 2009, “
Convection Calibration of Schmidt–Boelter Heat Flux Gages in Shear and Stagnation Air Flow
,”
ASME J. Heat Transfer
0022-1481, in press.
20.
Holmberg
,
D. G.
, and
Diller
,
T. E.
, 1995, “
High-Frequency Heat Flux Sensor Calibration and Modeling
,”
ASME J. Fluids Eng.
0098-2202,
117
(
4
), pp.
659
664
.
21.
Kidd
,
C.
, 1983, “
Determination of the Uncertainty of Experimental Heat-Flux Calibrations
,” AEDC Report No. TR-83-13.
You do not currently have access to this content.