In certain contemporary technologies, porous media with high solid-phase conductivity are impregnated with low-conductivity fluids, e.g., metal and graphite foam cooled by air. For such cases, an approximate analytical model for the developing heat transfer inside a two-dimensional rectangular porous medium subjected to constant heat flux is presented. The model neglects conduction in the fluid and assumes plug flow. The resulting nonthermal-equilibrium equations are solved for the solid and fluid temperatures by separation of variables. The temperatures decay exponentially as the distance from the heated base increases. The effects of the Biot and Peclet numbers are presented. Fully developed heat-transfer conditions are achieved at an axial distance equal to five times the height of the porous medium, with a constant Nusselt number equal to 3.

1.
Vafai
,
K.
, and
Tien
,
C. L.
, 1982, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
8
), pp.
1183
1190
.
2.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effect of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
2
), pp.
301
309
.
3.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
4.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of the Interstitial Convection Heat Transfer and Frictional Drag for Flow Across Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
5.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
639
645
.
6.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
7.
Angirasa
,
D.
, 2002, “
Forced Convective Heat Transfer in Metallic Fibrous Materials
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
739
745
.
8.
Poulikakos
,
D.
, and
Renken
,
K.
, 1987, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effect of Flow Inertia, Variable Porosity and Brinkman Friction
,”
ASME J. Heat Transfer
,
109
, pp.
880
888
. 0022-1481
9.
Vafai
,
K.
, and
Kim
,
S. J.
, 1989, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
,
111
, pp.
1103
1106
. 0022-1481
10.
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 2004, “
Analysis of Flow and Heat Transfer in Porous Media Imbedded Inside Various-Shaped Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1889
1905
.
11.
Narasimhan
,
A.
,
Lage
,
J.
, and
Nield
,
D. A.
, 2001, “
New Theory for Forced Convection Through Porous Media by Fluids With Temperature-Dependent Viscosity
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1045
1051
.
12.
Minkowycz
,
W. J.
, and
Haji-Sheikh
,
A.
, 2006, “
Heat Transfer in Parallel Plates and Circular Porous Passages With Axial Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
13-14
), pp.
2381
2390
. 0017-9310
13.
Kim
,
S. J.
, and
Jang
,
S. P.
, 2002, “
Effects of the Darcy Number, the Prandtl Number and the Reynolds Number on the Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3885
3896
.
14.
Kim
,
S. J.
, and
Kim
,
D.
, 2001, “
The Thermal Interaction at the Interface Between a Porous Medium and an Impermeable Wall
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
527
533
.
15.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model for the Analysis of Passive Thermal Control System
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
628
637
.
16.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
6
), pp.
939
954
.
17.
Hwang
,
G. J.
, and
Chao
,
C. H.
, 1994, “
Heat Transfer Measurement and Analysis for Sintered Porous Channels
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
456
464
.
18.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effects of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
651
664
.
19.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
20.
Quintard
,
M.
,
Kaviany
,
M.
, and
Whitaker
,
S.
, 1997, “
Two-Medium Treatment of Heat Transfer in Porous Media: Numerical Results for Effectvive Properties
,”
Adv. Water Resour.
0309-1708,
20
(
2-3
), pp.
77
94
.
21.
Deleglise
,
M.
,
Simacek
,
P.
,
Binetruy
,
C.
, and
Advani
,
S.
, 2003, “
Determination of the Thermal Dispersion Coefficient During Radial Filling of a Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
875
880
.
22.
Myers
,
G. E.
, 1998,
Analytical Methods in Conduction Heat Transfer
, 2nd ed.,
AMCHT
,
Madison, WI
, Chap. 3.
You do not currently have access to this content.