Microscale fluid dynamics has received intensive interest due to the emergence of microelectromechanical systems technology. When the mean free path of the gas is comparable to the channel’s characteristic dimension, the continuum assumption is no longer valid and velocity slip and temperature jump may occur at the duct walls. Slip flow heat transfer in annular microchannels has been examined. The effects of velocity slip and temperature jump on the hydrodynamically and thermally fully developed heat transfer characteristics for laminar flow have been studied analytically. The analysis is carried out for both uniform wall heat flux on one wall, adiabatic on the other wall, and uniform wall heat flux on both walls. The results indicate that the slip flow Nusselt numbers are lower than those for continuum flow and decrease with an increase in Knudsen number for most practical engineering applications. The effects of Knudsen number, radius ratio, and heat flux ratio on heat transfer characteristics are discussed, respectively.

1.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1991, “
Gas and Liquid Flow in Small Channels
,”
Micromechanical Sensors, Actuators, and Systems
, DSC-Vol. 32, ASME, New York, pp.
49
58
.
2.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1990, “
Gas and Liquid Transport in Small Channels
,”
Micromechanical Sensors, Actuators, and Systems
, DSC-Vol. 19, ASME, New York, pp.
149
157
.
3.
Harley
,
J.
,
Huang
,
Y.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flows in Micro-Channels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
4.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,”
Micromechanical Sensors, Actuators, and Systems
, DSC-Vol. 32, ASME, New York, pp.
123
134
.
5.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1994, “
Gaseous Flow in Microchannels
,”
Application of Microfabrication to Fluid Mechanics
, Vol.
FED-197
, ASME, New York, pp.
57
66
.
6.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
167
178
.
7.
Wu
,
S.
,
Mai
,
J.
,
Zohar
,
Y.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 1998, “
A Suspended Microchannel With Integrated Temperature Sensors for High Pressure Flow Studies
,”
Proceedings of IEEE Workshop on Micro Electro Mechanical Systems
,
Heidelberg
,
Germany
, pp.
87
92
.
8.
Araki
,
T.
,
Kim
,
M. S.
,
Hiroshi
,
I.
, and
Suzuki
,
K.
, 2000, “
An Experimental Investigation of Gaseous Flow Characteristics in Microchannels
,”
Proceedings of International Conference on Heat Transfer and Transport Phenomena in Microscale
,
G. P.
Celata
, ed.,
Begell House
,
New York
, pp.
155
161
.
9.
Schaaf
,
S. A.
, and
Chambre
,
P. L.
, 1958,
Flow of Rarefied Gases
,
Princeton University Press
,
Princeton, NJ
.
10.
Maurer
,
J.
,
Tabeling
,
P.
,
Joseph
,
P.
, and
Willaime
,
H.
, 2003, “
Second-Order Slip Laws in Microchannels for Helium and Nitrogen
,”
Phys. Fluids
1070-6631,
15
, pp.
2613
2621
.
11.
Aubert
,
C.
, and
Colin
,
S.
, 2001, “
High-Order Boundary Conditions for Gaseous Flows in Rectangular Microducts
,”
Microscale Thermophys. Eng.
1089-3954,
5
, pp.
41
54
.
12.
Deissler
,
R. G.
, 1964, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
0017-9310,
7
, pp.
681
694
.
13.
Colin
,
S.
,
Lalonde
,
P.
, and
Caen
,
R.
, 2004, “
Validation of a Second-Order Slip Flow Model in Rectangular Microchannels
,”
Heat Transfer Eng.
0145-7632,
25
, pp.
23
30
.
14.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2006, “
Challenges in Modeling Gas-Phase Flow in Microchannels: from Slip to Transition
,”
Heat Transfer Eng.
0145-7632,
27
, pp.
3
12
.
15.
Sparrow
,
E. M.
, and
Lin
,
S. H.
, 1962, “
Laminar Heat Transfer in Tubes Under Slip Flow Conditions
,”
ASME J. Heat Transfer
0022-1481,
84
, pp.
363
369
.
16.
Barron
,
R. F.
,
Wang
,
X. M.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
, 1997, “
The Graetz Problem Extended to Slip Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
8
), pp.
1817
1823
.
17.
Ameel
,
T. A.
,
Barron
,
R. F.
,
Wang
,
X. M.
, and
Warrington
,
R. O.
, 1997, “
Laminar Forced Convection in a Circular Tube With Constant Heat Flux and Slip Flow
,”
Microscale Thermophys. Eng.
1089-3954,
1
(
4
), pp.
303
320
.
18.
Larrode
,
F. E.
,
Housiadas
,
C.
, and
Drossinos
,
Y.
, 2000, “
Slip Flow Heat Transfer in Circular Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2669
2680
.
19.
Simek
,
O.
, and
Hadjiconstantinou
,
N. G.
, 2001, “
Slip Flow Constant-Wall-Temperature Nusselt Number in Circular Tubes in the Presence of Axial Heat Conduction
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
New York
, Paper No. IMECE2001/HTD-24106.
20.
Yu
,
S. P.
, and
Ameel
,
T. A.
, 2001, “
Slip Flow Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
22
), pp.
4225
4234
.
21.
Yu
,
S. P.
, and
Ameel
,
T. A.
, 2002, “
Slip Flow Convection in Isoflux Rectangular Microchannels
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
346
355
.
22.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2002, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
4
), pp.
765
773
.
23.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
, Chap. 12, pp.
291
and
295
.
24.
Rohsenow
,
W. M.
, and
Choi
,
H. Y.
, 1961,
Heat, Mass, and Momentum Transfer
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 11.
You do not currently have access to this content.