We present here the heat-transfer and fluid flow analysis of an acoustically levitated flattened disk-shaped liquid drop. The interest in this work arises from the noncontact measurement of the thermophysical properties of liquids. Such techniques have application to liquids in the undercooled state, i.e., the situation when a liquid stays in a fluidic state even when the temperature falls below the normal freezing point. This can happen when, for example, a liquid sample is held in a levitated state. Since such states are easily disrupted by measurement probes, noncontact methods are needed. We have employed a technique involving the use of acoustically levitated samples of the liquid. A thermal stimulus in the form of laser heating causes thermocapillary motion with flow characteristics depending on the thermophysical properties of the liquid. In a gravity field, buoyancy is disruptive to this thermocapillary flow, masking it with the dominant natural convection. As one approach to minimizing the effects of buoyancy, the drop was flattened (by intense acoustic pressure) in the form of a horizontal disk, about 0.5mm thick. As a result, with very little gravitational potential, and with most of the buoyant flow suppressed, thermocapillary flow remained the dominant form of fluid motion within the drop. This flow field is visualizable and subsequent analysis for the inverse problem of the thermal property can be conducted. This calls for numerical calculations involving a heat-transfer model for the flattened drop. With the presence of an acoustic field, the heat-transfer analysis requires information about the corresponding Biot number. In the presence of a high-frequency acoustic field, the steady streaming originates in a thin shear-wave layer, known as the Stokes layer, at a surface of the drop. The streaming develops into the main fluid, and is referred to as the outer streaming. Since the Stokes layer is asymptotically thin in comparison to the length scale of the problem, the outer streaming can be formally described by an effective slip velocity at the boundary. The presence of the thin Stokes layer, and the slip condition at the interface, changes the character of the heat-transfer mechanism, which is inherently different from the traditional boundary layer. The current analysis consists of a detailed semianalytical calculation of the flow field and the heat-transfer characteristics of a levitated drop in the presence of an acoustic field.

1.
Chung
,
S. K.
,
Thiessen
,
D. B.
, and
Rhim
,
W. K.
, 1990, “
A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials
,”
Rev. Sci. Instrum.
0034-6748,
67
, pp.
3175
3181
2.
Trinh
,
E. H.
,
Marston
,
P. L.
, and
Robey
,
J. L.
, 1988, “
Acoustic Measurement of the Surface Tension of Levitated Drops
,”
J. Colloid Interface Sci.
0021-9797,
124
, pp.
95
103
3.
Chung
,
S. K.
, and
Trinh
,
E. H.
, 1998, “
Containerless Protein Crystal Growth in Rotating Levitated Drops
,”
J. Cryst. Growth
0022-0248,
194
, pp.
384
397
.
4.
Rednikov
,
A. Y.
,
Riley
,
N.
, and
Sadhal
,
S. S.
, 2003, “
The Behaviour of a Particle in Orthogonal Acoustic Fields
,”
J. Fluid Mech.
0022-1120,
486
, pp.
1
20
.
5.
Rednikov
,
A. Y.
, and
Riley
,
N.
, 2002, “
A Simulation of Streaming Flows Associated With Acoustic Levitators
,”
Phys. Fluids
1070-6631,
14
(
4
), pp.
1502
1510
.
6.
Rednikov
,
A.
, and
Sadhal
,
S. S.
, 2004, “
Steady Streaming From an Oblate Spheroid Due to Vibrations Along Its Axis
,”
J. Fluid Mech.
0022-1120,
499
, pp.
345
380
.
7.
Sadhal
,
S. S.
,
Rednikov
,
A. Y.
, and
Ohsaka
,
K.
, 2004, “
Shape Relaxation of a Liquid Drop in a Microgravity Environment
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1027
, pp.
447
463
.
8.
Rednikov
,
A. Y.
,
Zhao
,
H.
,
Sadhal
,
S. S.
, and
Trinh
,
E. H.
, 2006, “
Steady Streaming Around a Spherical Drop Displaced From the Velocity Antinode in an Acoustic Levitation Field
,”
Q. J. Mech. Appl. Math.
0033-5614,
59
, pp.
377
397
.
9.
Hyers
,
R. W.
,
Matson
,
D. M.
,
Kelton
,
K. F.
, and
Rogers
,
J. R.
, 2004, “
Convection in Containerless Processing
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1027
, pp.
474
494
.
10.
Li
,
B. Q.
, and
Song
,
S. P.
, 1998, “
Thermal and Fluid Flow Aspects of Electromagnetic and Electrostatic Levitation—A Comparative Modeling Study
,”
Microgravity Sci. Technol.
0938-0108,
11
, pp.
134
143
.
11.
Matson
,
D. M.
,
Fair
,
D. J.
,
Hyers
,
R. W.
, and
Rogers
,
J. R.
, 2004, “
Contrasting Electrostatic and Electromagnetic Levitation Experimental Results for Transformation Kinetics of Steel Alloys
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1027
, pp.
435
446
.
12.
Rhim
,
W. K.
,
Ohsaka
,
K.
,
Paradis
,
P.-F.
, and
Spjut
,
R. E.
, 1999, “
Noncontact Technique for Measuring Surface Tension and Viscosity of Molten Materials Using High Temperature Electrostatic Levitation
,”
Rev. Sci. Instrum.
0034-6748,
70
, pp.
2796
2801
.
13.
Rulison
,
A. A.
, and
Rhim
,
W. K.
, 1994, “
A Noncontact Measurement Technique for the Specific Heat and Total Hemispherical Emissivity of Undercooled Refractory Materials
,”
Rev. Sci. Instrum.
0034-6748,
65
, pp.
695
700
.
14.
Rhim
,
W. K.
, and
Ishikawa
,
T
, 1998, “
Noncontact Electrical Resistivity Measurement Technique for Molten Metals
,”
Rev. Sci. Instrum.
0034-6748,
69
, pp.
3628
3633
.
15.
Lee
,
S. H.
,
Ohsaka
,
K.
,
Rednikov
,
A. Y.
, and
Sadhal
,
S. S.
, 2006, “
Noncontact Thermophysical Property Measurement by Levitation of a Thin Liquid Disk
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1077
, pp.
75
95
.
16.
Ohsaka
,
K.
,
Sadhal
,
S. S.
, and
Rednikov
,
A.
, 2002, “
Thermocapillary Flow Induced by Laser-Heating of an Acoustically Levitated Flattened Glycerin Drop
,”
ASME J. Heat Transfer
0022-1481,
124
, p.
599
.
17.
Ohsaka
,
K.
,
Rednikov
,
A.
, and
Sadhal
,
S. S.
, 2003, “
Noncontact Technique for Determining the Thermal Diffusivity Coefficient on Acoustically Levitated Liquid Drops
,”
Rev. Sci. Instrum.
0034-6748,
74
, pp.
1107
1112
.
18.
Li
,
B. Q.
, 2006, “
Effect of Convection on the Measurement of Thermophysical Properties Using Levitated Droplets
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1077
, pp.
1
32
.
19.
Shen
,
F.
,
Khodadadi
,
J. M.
,
Woods
,
M. C.
,
Weber
,
J. K. R.
, and
Li
,
B. Q.
, 1997, “
Containerless Thermal Diffusivity Determination of High-Temperature Levitated Spherical Specimen by Extended Flash Methods: Theory and Experimental Validation
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
210
219
.
20.
Rhim
,
W. K.
,
Chung
,
S. K.
,
Rulison
,
A. J.
, and
Spjut
,
R. E.
, 1997, “
Measurements of Thermophysical Properties of Molten Silicon by a High-Temperature Electrostatic Levitator
,”
Int. J. Thermophys.
0195-928X,
18
, pp.
459
469
.
21.
Ohsaka
,
K.
,
Rednikov
,
A.
,
Sadhal
,
S. S.
, and
Trinh
,
E. H.
, 2002, “
Noncontact Technique for Determining Viscosity From the Shape Relaxation of Ultrasonically Levitated and Initially Elongated Drops
,”
Rev. Sci. Instrum.
0034-6748,
73
, pp.
2091
2096
.
22.
Riley
,
N.
, 1966, “
On a Sphere Oscillating in a Viscous Fluid
,”
Q. J. Mech. Appl. Math.
0033-5614,
19
, pp.
462
472
.
23.
Rayleigh
,
L.
, 1883, “
On the Circulation of air Observed in Kundt’s Tubes and Some Allied Acoustical Problems
,”
Philos. Trans. R. Soc. London
0370-2316,
175
, pp.
1
21
.
24.
Aktas
,
M. K.
,
Farouk
,
B.
, and
Lin
,
Y.
, 2005, “
Heat Transfer Enhancement by Acoustic Streaming in an Enclosure
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1313
1327
.
25.
Gopinath
,
A.
, and
Mills
,
A. F.
, 1993, “
Convective Heat Transfer From a Sphere Due to Acoustic Streaming
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
332
341
.
26.
Bullard
,
C.
,
Hyers
,
R. W.
, and
Abedian
,
B.
, 2005, “
Spin-Up Instability of a Levitated Molten Drop in Magnetohydrodynamic-Flow Transition to Turbulence
,”
IEEE Trans. Magn.
0018-9464,
41
(
7
), pp.
2230
2236
.
27.
Lee
,
C. P.
,
Anilkumar
,
A. V.
, and
Wang
,
T. G.
, 1994, “
Static Shape of an Acoustically Levitated Drop With Wave-Drop Interaction
,”
Phys. Fluids
1070-6631,
6
(
11
), pp.
3554
3566
.
You do not currently have access to this content.