This is Paper I of a two-part study concerning thermal and hydrodynamic characteristics of liquid single-phase flow in an array of micro-pin-fins. This paper reports the heat transfer results of the study. An array of 1950 staggered square micro-pin-fins with 200×200μm2 cross-section by 670μm height were fabricated into a copper test section. De-ionized water was used as the cooling liquid. Two coolant inlet temperatures of 30°C and 60°C and six maximum mass velocities for each inlet temperature ranging from 183 to 420kg/m2s were tested. The corresponding inlet Reynolds number ranged from 45.9 to 179.6. General characteristics of average and local heat transfer were described. Six previous conventional long and intermediate pin-fin correlations and two micro-pin-fin correlations were examined and were found to overpredict the average Nusselt number data. Two new heat transfer correlations were proposed for the average heat transfer based on the present data, in which the average Nusselt number is correlated with the average Reynolds number by power law. Values of the exponent m of the Reynolds number for the two new correlations are fairly close to those for the two previous micro-pin-fin correlations but substantially higher than those for the previous conventional pin-fin correlations, indicating a stronger dependence of the Nusselt number on the Reynolds number in micro-pin-fin arrays. The correlations developed for the average Nusselt number can adequately predict the local Nusselt number data.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
(
5
), pp.
126
129
.
2.
Kawano
,
K.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 1998, “
Micro Channel Heat Exchanger for Cooling Electrical Equipment
,” ASME Paper No. HTD-361-3/PID-3.
3.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Cerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
20
(
2
), pp.
149
157
.
4.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
12
), pp.
2549
2565
.
5.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
9
), pp.
1688
1704
.
6.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
, 2005, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
0098-2202,
127
(
3
), pp.
419
430
.
7.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
17
), pp.
3615
3627
.
8.
Koşar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
0022-1481,
128
(
2
), pp.
121
131
.
9.
Koşar
,
A.
, and
Peles
,
Y.
, 2006, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
17-18
), pp.
3142
3155
.
10.
Koşar
,
A.
,
Kuo
,
C.
, and
Peles
,
Y.
, 2006, “
Hydoroil-Based Micro Pin Fin Heat Sink
,” ASME Paper No. IMECE2006-13257.
11.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
, 2007, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micro-Pin-Fins Under Cross Flow for Water As Fluid
,”
ASME J. Heat Transfer
0022-1481,
129
(
2
), pp.
141
153
.
12.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
, 2007, “
Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Pin-Fin Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
129
(
4
), pp.
479
487
.
13.
Zukauskas
,
A.
, 1972, “
Heat Transfer From Tubes in Crossflow
,”
Advances in Heat Transfer
, Vol.
8
,
Academic
,
New York
, pp.
93
160
.
14.
Gunter
,
A. Y.
, and
Shaw
,
W. A.
, 1945, “
A General Correlation of Friction Factor for Various Types of Surfaces in Crossflow
,”
Trans. ASME
0097-6822,
67
, pp.
643
660
.
15.
Whitaker
,
S.
, 1972, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
0001-1541,
18
(
2
), pp.
361
371
.
16.
Gaddis
,
E. S.
, and
Gnielinski
,
V.
, 1985, “
Pressure Drop in Cross Flow Across Tube Bundles
,”
Int. Chem. Eng.
0020-6318,
25
(
1
), pp.
1
14
.
17.
Hwang
,
T. H.
, and
Yao
,
S. C.
, 1986, “
Crossflow Heat Transfer in Tube Bundles at Low Reynolds Numbers
,”
ASME J. Heat Transfer
0022-1481,
108
(
3
), pp.
697
700
.
18.
Khan
,
W. A.
, 2004, “
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks
,” Ph.D. thesis, University of Waterloo, Waterloo, Canada.
19.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2006, “
Convection Heat Transfer from Tube Banks in Crossflow: Analytical Approach
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4831
4838
. 0017-9310
20.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Benson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
(
4
), pp.
700
706
.
21.
Simoneau
,
R. J.
, and
VanFossen
,
G. J.
, Jr.
, 1984, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
0022-1481,
106
(
1
), pp.
42
48
.
22.
Armstrong
,
J.
, and
Winstanley
,
D.
, 1988, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
0889-504X,
110
(
1
), pp.
94
103
.
23.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
0022-1481,
112
(
4
), pp.
926
932
.
24.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
, 1998, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
362
367
.
25.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
0889-504X,
121
(
2
), pp.
257
263
.
26.
Hwang
,
J. J.
,
Lai
,
D. Y.
, and
Tsia
,
Y. P.
, 1999, “
Heat Transfer and Pressure Drop in Pin Fin Trapezoidal Ducts
,”
ASME J. Turbomach.
0889-504X,
121
(
2
), pp.
264
271
.
27.
Marques
,
C.
, and
Kelly
,
K. W.
, 2004, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
126
(
3
), pp.
434
444
.
28.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part I: Friction Factor Correlation
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
3
), pp.
389
396
.
29.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part II: Colburn j-Factor Correlations
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
3
), pp.
397
403
.
30.
Moores
,
K. A.
, and
Joshi
,
Y. K.
, 2003, “
Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array
,”
ASME J. Heat Transfer
0022-1481,
125
(
6
), pp.
999
1006
.
31.
Qu
,
W.
, and
Siu-Ho
,
A.
, 2008, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins: Part-II Pressure Drop Characteristics
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
124501
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
(
1
), pp.
3
8
. 0025-6501
You do not currently have access to this content.