Boiling in microchannels is a very efficient mode of heat transfer since high heat and mass transfer coefficients are achieved. Here, the objective is to provide basic knowledge on the systems of biphasic cooling in mini- and microchannels during hyper- and microgravity. The experimental activities are performed in the frame of the MAP Boiling project founded by ESA. Analysis using inverse methods allows us to estimate local flow boiling heat transfers in the minichannels. To observe the influence of gravity level on the fluid flow and to take data measurements, an experimental setup is designed with two identical channels: one for the visualization and the other one for the data acquisition. These two devices enable us to study the influence of gravity on the temperature and pressure measurements. The two minichannels are modeled as a rectangular rod made up of three materials: a layer of polycarbonate (λ=0.2Wm1K1) used as an insulator, a cement rod (λ=0.83Wm1K1) instrumented with 21 K-type thermocouples, and in the middle a layer of Inconel® (λ=10.8Wm1K1) in which the minichannel is engraved. Pressure and temperature measurements are carried out simultaneously at various levels of the minichannel. Above the channel, we have a set of temperature and pressure gauges and inside the cement rods, five heating wires provide a power of 11W. The K-type thermocouple sensors enable us to acquire the temperature in various locations (x, y, and z) of the device. With these temperatures and the knowledge of the boundary conditions, we are able to solve the problem using inverse methods and obtain local heat fluxes and local surface temperatures on several locations. The experiments are conducted with HFE-7100 as this fluid has a low boiling temperature at the cabin pressure on Board A300. We applied for each experiment a constant heat flux (Qw=33kWm2) for the PF52 campaigns (Parabolic Flights). The mass flow rate varies in the range of 1<Qm<4gs1 and the fluid saturation temperature (Tsat) is 54°C at Psat=820mbars.

1.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
8
16
.
2.
Yan
,
Y.
, and
Kenning
,
D. B. R.
, 1998, “
Pressure Fluctuations During Boiling in a Narrow Channel
,” HTFS Research Symposium 1998.
3.
Kennedy
,
J. E.
,
Roach
,
G. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jeter
,
S. M.
, and
Quershi
,
Z. H.
, 2000, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
118
125
.
4.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channels Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2737
2753
.
5.
Brutin
,
D.
, and
Tadrist
,
L.
, 2003, “
Destabilization Mechanisms and Scaling Laws of Convective Boiling in a Minichannel
,”
J. Thermophys. Heat Transfer
0887-8722,
20
, pp.
851
855
.
6.
Hadamard
,
J.
, 1932,
Le Probème de Cauchy et les Équations aux Dérivées Partielles Linéaires Hyperboliques
,
Hermann
,
Paris
.
7.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
, 1984,
Boundary Element Techniques
,
Springer-Verlag
,
Berlin
.
8.
Pasquetti
,
R.
, and
Le Niliot
,
C.
, 1991, “
Boundary Element Approach for Inverse Conduction Problems: Application to a Bidimensional Transient Numerical Experiment
,”
Numer. Heat Transfer, Part B
1040-7790,
20
, pp.
169
189
.
9.
Martin
,
T. J.
,
Dulikravitch
, and
G. S.
, 1996, “
Inverse Determination of Boundary Conditions and Sources in Steady Heat Conduction With Heat Generation
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
546
554
.
10.
Lesnic
,
D.
,
Elliott
,
L.
, and
Ingham
,
D. B.
, 1996, “
Application of The Boundary Element Method to Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
1503
1517
.
11.
Lagier
,
G. L.
, 1999, “
Application de la méthode des éléments de frontière à la résolution du problème inverse de diffusion de la chaleurmultidimensionnel: régularisation par troncature de spectre
,” Ph.D. thesis, Institut National Polytechnique de, Grenoble, France.
12.
Dulikravitch
,
G. S.
, and
Martin
,
T. J.
, 1996, “
Inverse Determination of Boundary Conditions and Sources in Steady Heat Conduction With Heat Generation
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
546
554
.
13.
Le Niliot
,
C.
, and
Lefèvre
,
F.
, 2001, “
A Method for Multiple Steady Line Heat Sources Identification in a Diffusive System: Application to an Experimental 2D Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1425
1438
.
14.
Yang
,
C.-Y.
, 1999, “
The Determination of Two Heat Sources in an Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
345
356
.
15.
Silva Neto
,
A. J.
, and
Ozisik
,
M. N.
, 1992, “
Two-Dimensional Inverse Heat Conduction Problem of Estimating the Time-Varying Strength of a Line Heat Source
,”
J. Appl. Phys.
0021-8979,
71
, pp.
5357
5362
.
16.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, 1985,
Inverse Heat Conduction, Ill-Posed Problems
,
Wiley Interscience
,
New York
.
17.
Hansen
,
P. C.
, 1998,
Rank-Deficient and Discrete Ill-Posed Problems
,
SIAM
,
Philadelphia PA
.
18.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
, 1977,
Solutions of Ill-Posed Problems
,
V. H. Winston & Sons
,
Washington
, DC.
19.
Alifanov
,
O. M.
, 1977,
Inverse Heat Transfer Problems
,
Springer
,
Washington
, DC.
20.
Le Niliot
,
C.
, 2002,
La Méthode des Eléments de Frontière Pour la Résolution de Problèmes Inverses en Conduction de la Chaleur: Applications Numériques et Expérimentales
,
Hdr
,
Marseilles
.
21.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teulossky
,
S. A.
, and
Vetterling
,
W. T.
, 1990,
Numerical Recipes
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.