A discontinuous finite element method based on the discrete ordinates equation is extended to solve transient radiative transfer problems in absorbing, emitting, and scattering media. The fully implicit scheme is used to discretize the transient term. Three numerical examples are studied to illustrate the performance of this discontinuous finite element method. The numerical results are compared to the other benchmark approximate solutions. By comparison, the results show that the discontinuous finite element method is efficient, accurate, and stable, and can be used for solving transient radiative transfer problems in participating media. Because the continuity at interelement boundaries is relaxed in discontinuous finite element discretization so that field variable is considered discontinuous across the element boundaries. This feature makes the discontinuous finite element method able to predict the correct propagation speed within medium and accurately capture the sharp drop in the incident radiation and the radiative heat flux at the penetration front.

1.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F.
, 1998,
Microscale Energy Transport
,
Begell House
,
New York, Redding, CT
, pp.
1
93
.
2.
Longtin
,
J. P.
, and
Tien
,
C. L.
, 1996, “
Saturable Absorption During High Intensity Laser Heating of Liquids
,”
ASME J. Heat Transfer
0022-1481,
118
(
4
), pp.
924
930
.
3.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1992, “
Short Pulse Laser Heating in Metals
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
3
), pp.
719
726
.
4.
Yamada
,
Y.
, and
Tien
,
C. L.
, 1995, “
Light-Tissue Interaction and Optical Imaging in Biomediacine
,”
Annu. Rev. Fluid Mech.
0066-4189,
6
, pp.
1
59
.
5.
Liu
,
F.
,
Yoo
,
K. M.
, and
Alfano
,
R. R.
, 1993, “
Ultrafast Laser-Pulse Transmission and Imaging Through Biological Tissues
,”
Appl. Opt.
0003-6935,
32
(
4
), pp.
554
558
.
6.
Grant
,
M. J. C.
, and
Welch
,
A. J.
, 1989, “
Clinical Use of Laser-Tissue Interaction
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
8
(
4
), pp.
10
13
.
7.
Kumar
,
S.
, and
Mitra
,
K.
, 1999, “
Microscale Aspects of Thermal Radiation and Laser Applications
,”
Adv. Heat Transfer
0065-2717,
33
, pp.
187
294
.
8.
Brewster
,
M. Q.
, and
Yamada
,
Y.
, 1995, “
Optical Properties of Thick, Turbid Media From Picosecond Time-Resolved Light Scattering Measurements
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
14
), pp.
2569
2581
.
9.
Guo
,
Z. X.
,
Aber
,
J.
,
Garetz
,
B. A.
, and
Kumar
,
S.
, 2002, “
Monte Carlo Simulation and Experiments of Pulsed Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
159
168
.
10.
Lu
,
X. D.
, and
Hsu
,
P.-F.
, 2004, “
Reverse Monte Carlo Method for Transient Radiative Transfer in Participating Media
,”
ASME J. Heat Transfer
0022-1481,
126
(
4
), pp.
621
627
.
11.
Wu
,
C. Y.
, and
Wu
,
S. H.
, 2000, “
Integral Equation Formulation for Transient Radiative Transfer in an Anisotropically Scattering Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
11
), pp.
2009
2020
.
12.
Wu
,
C. Y.
, 2000, “
Propagation of Scattered Radiation in a Participating Planar Medium With Pulse Irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
64
(
5
), pp.
537
548
.
13.
Wu
,
S. H.
, and
Wu
,
C. Y.
, 2001, “
Time-Resolved Spatial Distribution of Scattered Radiative Energy in A Two-Dimensional Cylindrical Medium With a Large Mean Free Path for Scattering
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
14
), pp.
2611
2619
.
14.
Tan
,
Z. M.
, and
Hsu
,
P.-F.
, 2001, “
An Integral Formulation of Transient Radiative Transfer
,”
ASME J. Heat Transfer
0022-1481,
123
(
3
), pp.
466
475
.
15.
Tan
,
Z. M.
,
Hsu
,
P.-F.
, and
Chai
,
J. C.
, 2002, “
Transient Radiative Transfer in Three-Dimensional Homogeneous and Non-Homogeneous Participating Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
181
194
.
16.
Chai
,
J. C.
, 2003, “
One-Dimensional Transient Radiation Heat Transfer Modeling Using a Finite-Volume Method
,”
Numer. Heat Transfer, Part B
1040-7790,
44
(
2
), pp.
187
208
.
17.
Chai
,
J. C.
, 2004, “
Transient Radiative Transfer Modeling in Irregular Two-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
(
3
), pp.
281
294
.
18.
Chai
,
J. C.
,
Hsu
,
P.-F.
, and
Lam
,
Y. C.
, 2004, “
Three-Dimensional Transient Radiative Transfer Modeling Using the Finite-Volume Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
86
(
3
), pp.
299
313
.
19.
Sakami
,
M.
,
Mitra
,
K.
, and
Hsu
,
P.-F.
, 2000, “
Transient Radiative Transfer in Anisotropically Scattering Media Using Monotonicity-Preserving Schemes
,” ASME Int. Mechanical Engineering Congress & Exposition, Orlando, Nov, ASME HTD-Vol.
366-1
, pp.
135
143
.
20.
Sakami
,
M.
,
Mitra
,
K.
, and
Hsu
,
P.-F.
, 2002, “
Analysis of Light Pulse Transport Through Two-Dimensional Scattering and Absorbing Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
169
179
.
21.
Cui
,
X.
, and
Li
,
B. Q.
, 2004, “
A Discontinuous Finite Element Formulation for Internal Radiation Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
46
(
3
), pp.
223
242
.
22.
Cui
,
X.
, and
Li
,
B. Q.
, 2004, “
A Discontinuous Finite Element Formulation for Multidimensional Radiative Transfer in Absorbing, Emitting, and Scattering Media
,”
Numer. Heat Transfer, Part B
1040-7790,
46
(
5
), pp.
399
428
.
23.
Cui
,
X.
, and
Li
,
B. Q.
, 2005, “
Discontinuous Finite Element Solution of 2-D Radiative Transfer With and Without Axisymmetry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
(
3–4
), pp.
383
407
.
24.
Reed
,
W. H.
, and
Hill
,
T. R.
, 1973, “
Triangular Mesh Methods for the Neutron Transport Equation
,” Los Alamos Scientific Laboratory Technical Report No. LA-UR-73–479, Los Alamos, NM.
25.
Chen
,
Z. X.
, 2005,
Finite Element Methods and Their Applications
,
Springer-Verlag
,
Berlin
.
26.
Li
,
B. Q.
, 2006,
Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
,
Springer-Verlag
,
Berlin
.
27.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Improved Treatment of Scattering Using the Discrete Ordinates Method
,”
ASME J. Heat Transfer
0022-1481,
116
(
1
), pp.
260
263
.
You do not currently have access to this content.