Thermal instability in an electrically conducting fluid saturated porous medium, confined between two horizontal walls, has been investigated in the presence of an applied vertical magnetic field and rotation, using the Brinkman model. The temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent oscillatory part. Only infinitesimal disturbances are considered. The combined effect of permeability, rotation, vertical magnetic field, and temperature modulation has been investigated using Galerkin’s method and Floquet theory. The value of the critical Rayleigh number is calculated as function of amplitude and frequency of modulation, Chandrasekhar number, Taylor number, porous parameter, Prandtl number, and magnetic Prandtl number. It is found that rotation, magnetic field, and porous medium all have a stabilizing influence on the onset of thermal instability. Further, it is also found that it is possible to advance or delay the onset of convection by proper tuning of the frequency of modulation of the walls’ temperature. In addition the results corresponding to the Brinkman model and Darcy model have been compared for neutral instability.

1.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
Springer-Verlag
, New York.
2.
Patil
,
R. Prabhamani
, and
Rudraiah
,
N.
, 1973, “
Stability of Hydromagnetic Thermoconvective Flow Through Porous Medium
,”
ASME J. Appl. Mech.
0021-8936,
E40
, pp.
879
884
.
3.
Rudrauah
,
N.
, and
Vortmeyer
,
D.
, 1978, “
Stability of Finite-Amplitude and Overstable Convection of a Conducting Fluid Through Fixed Porous Bed
,”
Waerme- Stoffuebertrag.
0042-9929,
11
, pp.
241
254
.
4.
Patil
,
P. R.
, and
Vaidyanathan
,
G.
, 1983, “
On Setting Up of Convective Currents in a Rotating Porous Medium Under the Influence of Variable Viscosity
,”
Int. J. Eng. Sci.
0020-7225,
21
, pp.
123
130
.
5.
Rudraiah
,
N.
, 1984, “
Linear and Non-linear Magnetoconvection in a Porous Medium
,”
Proc. Indian Acad. Sci., Math. Sci.
0253-4142,
93
, pp.
117
135
.
6.
Vadasz
,
P.
, 1992, “
Natural Convection in a Porous Media Induced by the Centrifugal Body Force: The Solution for Small Aspect Ratio
,”
ASME J. Energy Resour. Technol.
0195-0738,
114
, pp.
250
254
.
7.
Vadasz
,
P.
, 1994, “
Centrifugally Generated Free Convection in a Rotating Porous Box
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2399
2404
.
8.
Vadasz
,
P.
, 1998, “
Coriolis Effect on Gravity-Driven Convection in a Rotating Porous Layer Heated From Below
,”
J. Fluid Mech.
0022-1120,
376
, pp.
351
375
.
9.
Alchaar
,
S.
,
Vasseur
,
P.
, and
Bilgen
,
E.
, 1995, “
Effect of a Magnetic Field on the Onset of Convection in a Porous Medium
,”
Heat Mass Transfer
0947-7411,
30
, pp.
259
267
.
10.
Qin
,
Y.
, and
Kaloni
,
P. N.
, 1995, “
Nonlinear Stability Problem of a Rotating Porous Layer
,”
Q. Appl. Math.
0033-569X,
53
, pp.
129
142
.
11.
Bian
,
W.
,
Vasseur
,
P.
, and
Bilgen
,
E.
, 1996, “
Effect of an External Magnetic Field on Buoyancy Driven Flow in a Shallow Porous Cavity
,”
Numer. Heat Transfer, Part A
1040-7782,
29
, pp.
625
638
.
12.
Desaive
,
Th.
,
Hennenberg
,
M.
, and
Lebon
,
G.
, 2002, “
Thermal Instability of a Rotating Saturated Porous Medium Heated From Below and Submitted to Rotation
,”
Eur. Phys. J. B
1434-6028,
29
, pp.
641
647
.
13.
Venezian
,
G.
, 1969, “
Effect of Modulation on the Onset of Thermal Convection
,”
J. Fluid Mech.
0022-1120,
35
(
2
), pp.
243
254
.
14.
Rosenblat
,
S.
, and
Herbert
,
D. M.
, 1970, “
Low Frequency Modulation of Thermal Instability
,”
J. Fluid Mech.
0022-1120,
43
, pp.
385
398
.
15.
Rosenblat
,
S.
, and
Tanaka
,
G. A.
, 1971, “
Modulation of Thermal Convection Instability
,”
Phys. Fluids
0031-9171,
14
(
7
), pp.
1319
1322
.
16.
Yih
,
C. S.
, and
Li
,
C. H.
, 1972, “
Instability of Unsteady Flows or Configurations. Part 2. Convective Instability
,”
J. Fluid Mech.
0022-1120,
54
(
1
), pp.
143
152
.
17.
Roppo
,
M. N.
,
Davis
,
S. H.
, and
Rosenblat
,
S.
, 1984, “
Benard Convection With Time-Periodic Heating
,”
Phys. Fluids
0031-9171,
27
(
4
), pp.
796
803
.
18.
Bhadauria
,
B. S.
, and
Bhatia
,
P. K.
, 2002, “
Time-Periodic Heating of Rayleigh-Benard Convection
,”
Phys. Scr.
0031-8949,
66
(
1
), pp.
59
65
.
19.
Bhadauria
,
B. S.
, 2005, “
Time-Periodic Heating of a Rotating Horizontal Fluid Layer in a Vertical Magnetic Field
,”
Z. Naturforsch., A: Phys. Sci.
0932-0784,
60
, pp.
583
592
.
20.
Bhadauria
,
B. S.
, 2006, “
Time-Periodic Heating of Rayleigh-Benard Convection in a Vertical Magnetic Field
,”
Phys. Scr.
0031-8949,
73
(
3
), pp.
296
302
.
21.
Catlagirone
,
J. P.
, 1976, “
Stabilite D’une Couche Poreuse Horizontale Soumise a Des Conditions Aux Limites Periodiques
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
815
820
.
22.
Chhuon
,
B.
, and
Caltagirone
,
J. P.
, 1979, “
Stability of a Horizontal Porous Layer With Timewise Periodic Boundary Conditions
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
244
248
.
23.
Rudraiah
,
N.
, and
Malashetty
,
M. S.
, 1988, “
Effect of Modulation on the Onset of Convection in a Porous Media
,”
Vignana Bharathi
,
11
(
1
), pp.
19
44
.
24.
Rudraiah
,
N.
, and
Malashetty
,
M. S.
, 1990, “
Effect of Modulation on the Onset of Convection in a Sparsely Packed Porous Layer
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
685
689
.
25.
Malashetty
,
M. S.
, and
Wadi
,
V. S.
, 1999, “
Rayleigh-Benard Convection Subject to Time Dependent Wall Temperature in a Fluid Saturated Porous Layer
,”
Fluid Dyn. Res.
0169-5983,
24
, pp.
293
308
.
26.
Malashetty
,
M. S.
, and
Basavaraja
,
D.
, 2002, “
Rayleigh-Benard Convection Subject to Time Dependent Wall Temperature/Gravity in a Fluid Saturated Anisotropic Porous Medium
,”
Heat Mass Transfer
0947-7411,
38
, pp.
551
563
.
27.
Malashetty
,
M. S.
, and
Basavaraja
,
D.
, 2003, “
The Effect of Thermal/Gravity Modulation on the Onset of Convection in a Horizontal Anisotropic Porous Layer
,”
Appl. Mech. Eng.
1425-1655,
8
(
3
), pp.
425
439
.
28.
Bhadauria
,
B. S.
, 2007, “
Thermal Modulation of Raleigh-Benard Convection in a Sparsely Packed Porous Medium
,”
J. Porous Media
,
10
(
2
), in press.
29.
Bhadauria
,
B. S.
, 2007, “
Fluid Convection in a Rotating Porous Layer Under Modulated Temperature on the Boundaries
,”
J. Porous Media
1091-028X,
67
(
2
),
297
215
.
30.
Walker
,
K.
, and
Hosmy
,
G. H.
, 1977, “
A Note on Convective Instability of Boussinesq Fluids in a Porous Media
,”
ASME J. Heat Transfer
0022-1481,
99
(
2
), pp.
338
339
.
31.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
, London.
32.
Sastry
,
S. S.
, 1993,
Introductory Methods of Numerical Analysis
,
Prentice-Hall of India Private Limited
, New Delhi.
33.
Cesari
,
L.
, 1963,
Asymptotic Behavior and Stability Problems
,
Springer Verlag
, Berlin.
34.
Jain
,
M. K.
,
Iyengar
,
S. R. K.
, and
Jain
,
R. K.
, 1991,
Numerical Methods for Scientific and Engineering Computation
,
Wiley Eastern Limited
, New Delhi.
You do not currently have access to this content.