Abstract

Turbulent flow and heat transfer in rotating ribbed ducts of different aspect ratios (AR) are studied numerically using an unsteady Reynolds averaged Navier–Stokes procedure. Results for three ARs (1:1, 1:4, and 4:1) and staggered ribs with constant pitch (Pe=10) in the periodically developed region are presented and compared. To achieve periodic flow behavior in successive inter-rib modules calculations are performed in a computational domain that extends to two or three inter-rib modules. The computations are carried out for an extended parameter set with a Reynolds number range of 25,000–150,000, density ratio range of 0–0.5, and rotation number range of 0–0.50. Under rotational conditions, the highest heat transfer along the leading and side walls are obtained with the 4:1 AR, while the 1:4 AR has the highest trailing wall Nu ratio and the lowest leading wall Nu ratio. The 1:4 AR duct shows flow reversal near the leading wall (leading to low Nu) at high rotation numbers and density ratios. For certain critical parameter values (low Re, high Ro, and/or DR), the leading wall flow is expected to become nearly stagnant, due to the action of centrifugal buoyancy, leading to conduction-limited heat transfer. The 4:1 AR duct shows evidence of multiple rolls in the secondary flow that direct the core flow to both the leading and trailing surfaces which reduces the difference between the leading and trailing wall heat transfer relative to the other two AR ducts.

1.
Han
,
J. C.
, and
Park
,
J. S.
, 1988, “
Developing Heat Transfer in Rectangular Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
1
), pp.
183
195
.
2.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1989, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
9
), pp.
1619
1630
.
3.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
, 2004, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,”
Proceedings ASME International Gas Turbine Conference
, Vienna, Austria, June 14–17, Paper No. ASME-GT-2004-53501.
4.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
, 1992, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
J. Turbomach.
0889-504X,
114
, pp.
847
857
.
5.
Johnson
,
B. V.
,
Wagner
,
J. H.
, and
Steuber
,
G. D.
, 1993, “
Effect of Rotation on Coolant Passage Heat Transfer
,” NASA Contractor Report No. 4396, Vol.
II
, NASA, Washington, D.C.
6.
Chen
,
Y.
,
Nikitopoulos
,
D. E.
,
Hibbs
,
R.
,
Acharya
,
S.
, and
Myrum
,
T. A.
, 2000, “
Detailed Mass Transfer Distribution in a Ribbed Coolant Passage with a 180°
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1479
1492
.
7.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J.-C.
,
Moon
,
H.-K.
, and
Glezer
,
B.
, 2002, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel with 45° angled rib turbulators
,”
J. Turbomach.
0889-504X,
124
, pp.
251
259
.
8.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2002, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) with Angled Ribs
,”
J. Heat Transfer
0022-1481,
124
, pp.
617
625
.
9.
Stephens
,
M. A.
,
Shih
,
T. I.-P.
, and
Civinskas
,
K. C.
, 1995, “
Computation of Flow and Heat Transfer in a Rectangular Channel with Ribs
,” AIPP Paper No. 95-0180.
10.
Rigby
,
D. L.
,
Steinthorsson
,
E.
, and
Ameri
,
A. A.
, 1997, “
Numerical Prediction of Heat Transfer in a Channel with Ribs and Bleed
,” ASME Paper No. 97-GT-431.
11.
Bo
,
T.
,
Iacovides
,
H.
, and
Launder
,
B. E.
, 1995, “
Developing Buoyancy-modified Turbulent Flow in Ducts Rotating in Orthogonal Mode
,”
J. Turbomach.
0889-504X,
117
, pp.
474
484
.
12.
Iacovides
,
H.
, 1998, “
Computation of Flow and Heat Transfer Through Rotating Ribbed Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
393
400
.
13.
Al-Qahtani
,
M.
,
Jang
,
Y.-J.
,
Chen
,
H.-C.
, and
Han
,
J. C.
, 2002, “
Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels with 45° Rib Turbulators
,”
J. Turbomach.
0889-504X,
124
(
2
), pp.
242
250
.
14.
Pallares
,
J.
, and
Davidson
,
L.
, 2000, “
Large Eddy Simulations of Turbulent Flow in a Rotating Square Duct
,”
Phys. Fluids
1070-6631,
12
(
11
), pp.
2878
2894
.
15.
Murata
,
A.
, and
Mochizuki
,
S.
, 2001, “
Effect of Centrifugal Buoyancy on Turbulent Heat Transfer in an Orthogonally Rotating Square Duct with Transverse or Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2739
2750
.
16.
Saha
,
A. K.
, and
Acharya
,
S.
, 2003, “
Flow and Heat Transfer in Internally Ribbed Ducts with Rotation: An Assessment of LES and RANS
,” GT2003-38619,
Proceedings of the ASME IGTI 2003
, Atlanta, GA, June 16–19.
17.
Murata
,
A.
, and
Mochizuki
,
S.
, 2000, “
Large Eddy Simulation with a Dynamic Subgrid-Scale Model of Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct with Transverse Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
7
), pp.
1243
1259
.
18.
Murata
,
A.
, and
Mochizuki
,
S.
, 2003, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct with Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
16
), pp.
3119
3133
.
19.
Wang
,
G.
, and
Vanka
,
S. P.
, 1995, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
17
), pp.
3219
3230
.
20.
Kato
,
M.
, and
Launder
,
B. E.
, 1993, “
The Modelling of Turbulent Flow around Stationery and Vibrating Square Cylinders
,”
Proceedings 9th Symposium on Turbulent Shear Flows
, Kyoto, Japan, August, Vol.
10-4
.
21.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surfaces
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2188
.
22.
Kawamura
,
T.
,
Takami
,
H.
, and
Kuwahara
,
K.
, 1986, “
Computation of High Reynolds Number Flow around a Circular Cylinder with Surface Roughness
,”
Fluid Dyn. Res.
0169-5983,
1
, pp.
145
162
.
23.
Saha
,
A. K.
, and
Acharya
,
S.
, 2004, “
Unsteady Simulation of Turbulent Flow and Heat Transfer in a Channel with Periodic Array of Cubic Pin-Fins
,”
Numer. Heat Transfer, Part A
1040-7782,
46
(
6
), pp.
510
543
.
24.
Saha
,
A. K.
, and
Acharya
,
S.
, 2003, “
Parametric Study of Unsteady Flow and Heat Transfer in a Pin-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
20
), pp.
3815
3830
.
25.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
, 2001, “
Two-Dimensional Study of the Turbulent Wake Behind a Square Cylinder Subject to Uniform Shear
,”
J. Fluids Eng.
0098-2202,
123
, pp.
595
603
.
You do not currently have access to this content.