With the rapid progress on ultrashort pulse laser, the transient radiative transfer in absorbing and scattering media has attracted increasing attention. The temporal radiative signals from a medium irradiated by ultrashort pulses offer more useful information which reflects the internal structure and properties of media than that by the continuous light sources. In the present research, a finite element model, which is based on the discrete ordinates method and least-squares variational principle, is developed to simulate short-pulse light radiative transfer in homogeneous and nonhomogeneous media. The numerical formulations and detailed steps are given. The present models are verified by two benchmark cases, and several transient radiative transfer cases in two-layer and three-layer nonhomogeneous media are investigated and analyzed. The results indicate that the reflected signals can imply the break of optical properties profile and their location. Moreover, the investigation for uniqueness of temporal reflected and transmitted signals indicate that neither of these two kinds of signals can be solely taken as experimental measurements to predict the optical properties of medium. They should be measured simultaneously in the optical imaging application. The ability of the present model to deal with multi-dimensional problems is proved by the two cases in the two-dimensional enclosure.

1.
Gibson
,
A. P.
,
Hebden
,
J. C.
, and
Arridge
,
S. R.
, 2005, “
Recent Advances in Diffuse Optical Imaging
,”
Phys. Med. Biol.
0031-9155,
50
, pp.
R1
R43
.
2.
Tan
,
Z. M.
, and
Hsu
,
P. F.
, 2001, “
An Integral Formulation of Transient Radiative Transfer
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
466
475
.
3.
Arridge
,
S. R.
,
Schweiger
,
M.
,
Hiraoka
,
M.
, and
Delpy
,
D. T.
, 1993, “
A Finite Element Approach to Modelling Photon Transport in Tissue
,”
Med. Phys.
0094-2405,
20
, pp.
299
309
.
4.
Firbank
,
M.
,
Arridge
,
S. R.
,
Schweiger
,
M.
, and
Delpy
,
D. T.
, 1996, “
An Investigation of Light Transport Through Scattering Bodies with Non-Scattering Regions
,”
Phys. Med. Biol.
0031-9155,
41
, pp.
767
783
.
5.
Brewster
,
M. Q.
, and
Yamada
,
Y.
, 1995, “
Optical Properties of Thick, Turbid Media from Picosecond Time-Resolved Light Scattering Measurements
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
14
), pp.
2569
2581
.
6.
Elaloufi
,
R.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2002, “
Time-Dependent Transport Through Scattering Media: From Radiative Transfer to Diffusion
,”
J. Opt. A, Pure Appl. Opt.
1464-4258,
4
(
5
), pp.
103
108
.
7.
Guo
,
Z.
, and
Kumar
,
S.
, 2000, “
Discrete-Ordinates Solution of Short-Pulsed Laser Transport in Two-Dimensional Turbid Media
,”
Appl. Opt.
0003-6935,
39
(
24
), pp.
4411
4417
.
8.
Sakami
,
M.
,
Mitra
,
K.
, and
Vo-Dinh
,
T.
, 2002, “
Analysis of Short-Pulse Laser Photon Transport Through Tissues for Optical Tomography
,”
Opt. Lett.
0146-9592,
27
(
5
), pp.
336
338
.
9.
Chai
,
J. C.
, 2003, “
One-Dimensional Transient Radiation Heat Transfer Modeling Using a Finite-Volume Method
,”
Numer. Heat Transfer, Part B
1040-7790,
44
, pp.
187
208
.
10.
Chai
,
J. C.
, 2004, “
Transient Radiative Transfer in Irregular Two-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
, pp.
281
294
.
11.
Wu
,
C. Y.
, 2000, “
Propagation of Scattered Radiation in a Participating Planar Medium With Pulse Irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
64
, pp.
537
548
.
12.
Hsu
,
P. F.
, 2001, “
Effects of Multiple Scattering and Reflective Boundary on the Transient Radiative Transfer Process
,”
Int. J. Therm. Sci.
1290-0729,
40
, pp.
539
549
.
13.
Lu
,
X. D.
, and
Hsu
,
P. F.
, 2004, “
Reverse Monte Carlo Method for Transient Radiative Transfer in Participating Media
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
621
627
.
14.
An
,
W.
,
Ruan
,
L. M.
,
Tan
,
H. P.
, and
Qi
,
H.
, 2005, “
Least Squares Finite Element Analysis for Transient Radiative Transfer in Absorbing and Scattering Media
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
499
503
.
15.
Pontaza
,
J. P.
, and
Reddy
,
J. N.
, 2005, “
Least-Squares Finite Element Formulations for One-Dimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
95
(
3
), pp.
387
406
.
16.
Liu
,
L. H.
, 2004, “
Finite Element Simulation of Radiative Heat Transfer in Absorbing and Scattering Media
,”
AIAA J.
0001-1452,
18
(
4
), pp.
555
557
.
17.
An
,
W.
,
Ruan
,
L. M.
,
Qi
,
H.
, and
Liu
,
L. H.
, 2005, “
Finite Element Method for Radiative Heat Transfer in Absorbing and Anisotropic Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
(
3–4
), pp.
409
422
.
18.
Cui
,
X.
, and
Li
,
B. Q.
, 2005, “
Discontinuous Finite Element Solution of 2D Radiative Transfer With and Without Axisymmetry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
(
3–4
), pp.
383
407
.
19.
Lu
,
X. D.
, and
Hsu
,
P. F.
, 2005, “
Reverse Monte Carlo Simulations of Light Pulse Propagation in Non-Homogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
349
367
.
20.
Hsu
,
P. F.
, and
Lu
,
X. D.
, 2005, “
Temporal Reflectance from a Light Pulse Irradiated Medium Embedded With Highly Scattering Cores
,”
Proceedings EUROTHERM Seminar 82, Numerical Heat Transfer, 2
, Gliwice-Cracow, Poland, September 13–16, pp.
323
332
.
21.
Li
,
H. S.
,
Zhou
,
H. C.
,
Lu
,
J. D.
, and
Zheng
,
C. G.
, 1995, “
Computation of 2D Pinhole Image-Formation Process of Large-Scale Furnaces Using the Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
78
, pp.
437
453
.
22.
Modest
,
M. F.
, 1993,
Radiative Heat Transfer
,
McGraw-Hill
, New York.
23.
Sakami
,
M.
,
Mitra
,
K.
, and
Hsu
,
P. F.
, 2002, “
Analysis of Light Pulse Through Two-Dimensional Scattering and Absorbing Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
, pp.
169
179
.
24.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Partankar
,
S. V.
, 1993, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
1040-7790,
24
(
2
), pp.
373
389
.
25.
Ruan
,
L. M.
,
An
,
W.
,
Xie
,
M.
, and
Tan
,
H. P.
, 2006, “
Simulation of Short-Pulse Light Radiative Transfer in Participating Media by Least Squares Finite Element Method
,”
Proceedings EUROTHERM Seminar 78, Computational Radiative Transfer in Participating Media, 2
, Poitiers-Futuroscope, France, April 5–7, pp.
115
123
.
You do not currently have access to this content.