The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2to217nm and temperatures from 300to1000K. The relation between the bulk phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (Λds) at 300K to the diffusive, bulk-like regime (Λds) at 1000K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debye’s temperature.

1.
International Technology Roadmap for Semiconductors
, 2005, http://public.itrs.nethttp://public.itrs.net.
2.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
3.
Li
,
D.
,
Huxtable
,
S. T.
,
Abramson
,
A. R.
, and
Majumdar
,
A.
, 2005, “
Thermal Transport in Nanostructured Solid-State Cooling Devices
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
108
114
.
4.
Yang
,
R.
,
Chen
,
G.
,
Laroche
,
M.
, and
Taur
,
Y.
, 2005, “
Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
298
306
.
5.
Srivastava
,
G. P.
, 1990,
The Physics of Phonons
,
A. Hilger
,
New York
, pp.
175
178
.
6.
Hone
,
J.
,
Llaguno
,
M. C.
,
Biercuk
,
M. J.
,
Johnson
,
A. T.
,
Batlogg
,
B.
,
Benes
,
Z.
, and
Fischer
,
J. E.
, 2002, “
Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials
,”
Appl. Phys. A
0947-8396,
A74
(
3
), pp.
339
343
.
7.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Charlier
,
J. C.
, and
Hernandez
,
E.
, 2004, “
Electronic, Thermal and Mechanical Properties of Carbon Nanotubes
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
362
(
1823
), pp.
2065
2098
.
8.
Zhong
,
H.
, and
Lukes
,
J. R.
, “
Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA.
, IMECE2004-61665.
9.
Volz
,
S. G.
, and
Chen
,
G.
, 1999, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
75
(
14
), pp.
2056
2058
.
10.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2934
2936
.
11.
Li
,
D.
,
Wu
,
Y.
,
Fan
,
R.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Si∕SiGe Superlattice Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
(
15
), pp.
3186
3188
.
12.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Thin Films with Thickness of Order 100nm
,”
Appl. Phys. Lett.
0003-6951,
74
(
20
), pp.
3005
3007
.
13.
Liu
,
W.
, and
Asheghi
,
M.
, 2004, “
Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers
,”
Appl. Phys. Lett.
0003-6951,
84
(
19
), pp.
3819
3821
.
14.
Liu
,
W.
, and
Asheghi
,
M.
, “
Thermal Conductivity in Ultra-Thin Pure and Doped Single Crystal Silicon Layers at High Temperatures
,”
Proc. ASME Summer Heat Transfer Conference
,
San Francisco, CA.
, HT2005-72540.
15.
Volz
,
S.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
, 2000, “
Computation of Thermal Conductivity of Si∕Ge Superlattice by Molecular Dynamics Technique
,”
Microelectron. J.
0026-2692,
31
(
9–10
), pp.
815
819
.
16.
Abramson
,
A. R.
,
Tien
,
C.-L.
, and
Majumdar
,
A.
, 2002, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer
0022-1481,
124
(
5
), pp.
963
970
.
17.
Daly
,
B. C.
, and
Maris
,
H. J.
, 2002, “
Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation
,”
Physica B
0921-4526,
316–317
, pp.
247
249
.
18.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
, 1998, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
30
36
.
19.
Liu
,
W.
, and
Asheghi
,
M.
, “
Thermal Conductivity of Ultra Thin Single Crystal Silicon Layers, Part 1—Experimental Measurements at Room and Cryogenic Temperatures
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA.
, IMECE2004-62105.
20.
Majumdar
,
A.
,
Fushinobu
,
K.
, and
Hijikata
,
K.
, 1995, “
Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor
,”
J. Appl. Phys.
0021-8979,
77
(
12
), pp.
6686
6694
.
21.
Fushinobu
,
K.
,
Majumdar
,
A.
, and
Hijikata
,
K.
, 1995, “
Heat Generation and Transport in Submicron Semiconductor Devices
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
25
31
.
22.
Lai
,
J.
, and
Majumdar
,
A.
, 1996, “
Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices
,”
J. Appl. Phys.
0021-8979,
79
(
9
), pp.
7353
7361
.
23.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2003, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
125
(
5
), pp.
896
903
.
24.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
25.
Amon
,
C. H.
,
Ghai
,
S. S.
,
Kim
,
W. T.
, and
Jhon
,
M. S.
, 2006, “
Modeling of Nanoscale Transport Phenomena: Application to Information Technology
,”
Physica A
0378-4371,
362
, pp.
36
41
.
26.
Escobar
,
R. A.
,
Smith
,
B.
, and
Amon
,
C. H.
, 2006, “
Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices
,”
ASME J. Electron. Packag.
1043-7398,
128
(
2
), pp.
115
124
.
27.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
, 2006, “
Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Applications to Electronics Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
97
107
.
28.
Ghai
,
S. S.
,
Kim
,
W. T.
,
Escobar
,
R.
,
Amon
,
C. H.
, and
Jhon
,
M. S.
, 2005, “
A Novel Heat Transfer Model and Its Application to Information Storage Systems
,”
J. Appl. Phys.
0021-8979,
97
, pp.
10P703
-1–
3
.
29.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
127
(
7
), pp.
713
723
.
30.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2006, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
0947-7411,
42
(
6
), pp.
478
491
.
31.
Klitsner
,
T.
,
VanCleve
,
J. E.
,
Fischer
,
H. E.
, and
Pohl
,
R. O.
, 1988, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
0163-1829,
38
, pp.
7576
7594
.
32.
Peterson
,
R. B.
, 1994, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
815
822
.
33.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
34.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J.
, and
Majumdar
,
A.
, 2005, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1129
1137
.
35.
Li
,
J.
,
Porter
,
L. J.
, and
Yip
,
S.
, 1998, “
Atomistic Modeling of Finite-Temperature Properties of Crystalline β-SiC. II. Thermal Conductivity and Effects of Point Defects
,”
J. Nucl. Mater.
0022-3115,
255
, pp.
139
152
.
36.
Lukes
,
J. R.
,
Li
,
D. Y.
,
Liang
,
X.-G.
, and
Tien
,
C.-L.
, 2000, “
Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
536
543
.
37.
Volz
,
S. G.
, and
Chen
,
G.
, 2000, “
Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals
,”
Phys. Rev. B
0163-1829,
61
(
4
), pp.
2651
2656
.
38.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
65
, pp.
144306
.
39.
Gomes
,
C. J.
,
Madrid
,
M.
, and
Amon
,
C. H.
, “
Thin Film In-Plane Thermal Conductivity Dependence on Molecular Dynamics Surface Boundary Conditions
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
, IMECE2004-62264.
40.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part II. Complex Silica Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1799
1816
.
41.
Che
,
J.
,
Cagin
,
T.
,
Deng
,
W.
, and
Goddard
,
W. A.
, 2000, “
Thermal Conductivity of Diamond and Related Materials From Molecular Dynamics Simulations
,”
J. Chem. Phys.
0021-9606,
113
(
16
), pp.
6888
6900
.
42.
Volz
,
S. G.
, and
Chen
,
G.
, 1999, “
Lattice Dynamic Simulation of Silicon Thermal Conductivity
,”
Physica B
0921-4526,
263–264
, pp.
709
712
.
43.
Gomes
,
C. J.
,
Madrid
,
M.
, and
Amon
,
C. H.
, “
Parallel Molecular Dynamics Code Validation Through Bulk Silicon Thermal Conductivity Calculations
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
,
Washington, DC.
, IMECE2003-42352.
44.
Che
,
J.
,
Cagin
,
T.
, and
Goddard
,
W. A.
, III
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
11
, pp.
65
69
.
45.
Lee
,
Y. H.
,
Biswas
,
R.
,
Soukoulis
,
C. M.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
, 1991, “
Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon
,”
Phys. Rev. B
0163-1829,
43
(
8
), pp.
6573
6580
.
46.
Ding
,
K.
, and
Andersen
,
H. C.
, 1986, “
Molecular-Dynamics Simulation of Amorphous Germanium
,”
Phys. Rev. B
0163-1829,
34
(
10
), pp.
6987
6991
.
47.
Feng
,
X.-L.
,
Li
,
D.
, and
Guo
,
Z.-Y.
, 2003, “
Molecular Dynamics Simulation of Thermal Conductivity of Nanoscale Thin Silicon Films
,”
Microscale Thermophys. Eng.
1089-3954,
7
, pp.
153
161
.
48.
Weakliem
,
P. C.
, and
Carter
,
E. A.
, 1992, “
Constant Temperature Molecular Dynamics Simulations of Si(100) and Ge(100): Equilibrium Structure and Short-Time Behavior
,”
J. Chem. Phys.
0021-9606,
96
(
4
), pp.
3240
3250
.
49.
Yu
,
Q.
, and
Clancy
,
P.
, 1994, “
Molecular Dynamics Simulation of the Surface Reconstruction and Strain Relief in Si1−xGex∕Si(100) Heterostructures
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
2
, pp.
829
844
.
50.
Chantrenne
,
P.
, and
Barrat
,
J.-L.
, 2004, “
Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
577
585
.
51.
Stillinger
,
F. H.
, and
Weber
,
T. A.
, 1985, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
0163-1829,
31
(
8
), pp.
5262
5271
.
52.
Broughton
,
J. Q.
, and
Li
,
X. P.
, 1987, “
Phase Diagram of Silicon by Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
35
(
17
), pp.
9120
9127
.
53.
Cook
,
S. J.
, and
Clancy
,
P.
, 1993, “
Comparison of Semi-Empirical Potential Functions for Silicon and Germanium
,”
Phys. Rev. B
0163-1829,
47
(
13
), pp.
7686
7699
.
54.
Karimi
,
M.
,
Yates
,
H.
,
Ray
,
J. R.
,
Kaplan
,
T.
, and
Mostoller
,
M.
, 1998, “
Elastic Constants of Silicon Using Monte Carlo Simulations
,”
Phys. Rev. B
0163-1829,
58
(
10
), pp.
6019
6025
.
55.
Kallman
,
J. S.
,
Hoover
,
W. G.
,
Hoover
,
C. G.
,
Groot
,
A. J. D.
,
Lee
,
S. M.
, and
Wooten
,
F.
, 1993, “
Molecular Dynamics of Silicon Indentation
,”
Phys. Rev. B
0163-1829,
47
(
13
), pp.
7705
7709
.
56.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford, UK
, pp.
61
62
.
57.
Frenkel
,
D.
, and
Smit
,
B.
, 2001,
Understanding Molecular Simulation: From Algorithms to Applications
,
Academic
,
San Diego, CA.
, p.
90
.
58.
McQuarrie
,
D. A.
, 1976,
Statistical Mechanics
,
University Science Books
,
Sausalito, CA.
, p.
521
.
59.
Hardy
,
R. J.
, 1963, “
Energy-Flux Operator for a Lattice
,”
Phys. Rev.
0031-899X,
132
(
1
), pp.
168
177
.
60.
Reif
,
F.
,
Fundamentals of Statistical and Thermal Physics
,
McGraw-Hill
,
New York
, pp.
480
483
.
61.
Flubacher
,
P.
,
Leadbetter
,
A. J.
, and
Morrison
,
J. A.
, 1959, “
Heat Capacity of Pure Silicon and Germanium and Properties of Their Vibrational Frequency Spectra
,”
Philos. Mag.
0031-8086,
4
(
39
), pp.
273
294
.
62.
Desai
,
P. D.
, 1986, “
Thermodynamic Properties of Iron and Silicon
,”
J. Phys. Chem. Ref. Data
0047-2689,
15
(
3
), pp.
967
983
.
63.
Porter
,
L. J.
,
Justo
,
J. F.
, and
Yip
,
S.
, 1997, “
The Importance of Gruneisen Parameters in Developing Interatomic Potentials
,”
J. Appl. Phys.
0021-8979,
82
, pp.
5378
5381
.
64.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Holt, Rinehart and Winston
,
New York
, p.
461
.
65.
Aono
,
M.
,
Hou
,
Y.
,
Oshima
,
C.
, and
Ishizawa
,
Y.
, 1982, “
Low-Energy Ion Scattering From the Si(001) Surface
,”
Phys. Rev. Lett.
0031-9007,
49
, pp.
567
570
.
66.
Yang
,
W. S. F.
,
Jona
,
F.
, and
Marcus
,
P. M.
, 1983, “
Atomic Structure of Si{001}2×1
,”
Phys. Rev. B
0163-1829,
28
(
4
), pp.
2049
2059
.
67.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
, 1972, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
0047-2689,
1
(
2
), pp.
279
421
.
68.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16.
You do not currently have access to this content.