The capability of using the population balance approach combined with a three-dimensional two-fluid model for predicting subcooled boiling flow is investigated. Experiments were conducted to study the local flow characteristics of subcooled boiling flow and to provide measured local two-phase flow parameters. Calculations were performed using the newly developed population balance boiling model to study the effects of various factors on numerical predication of local two-phase flow parameters in the subcooled boiling regime. Comparison of model predictions against local measurements was made for the radial distribution of the bubble Sauter diameter and void fraction covering a range of different mass and heat fluxes and inlet subcooling temperatures. Additional comparison using recent active nucleation site density models and empirical relationships to determine the local bubble diameter adopted by other researchers was also investigated. Overall, good agreement was achieved between predictions and measurements using the newly formulated population balance approach based on the modified MUSIG (multiple-size-group) model for subcooled boiling and two-fluid model.

1.
Ramkrishna
,
D.
, and
Mahoney
,
A. W.
,
2002
, “
Population Balance Modeling: Promise for the Future
,”
Chem. Eng. Sci.
,
57
, pp.
595
606
.
2.
Krishna
,
R.
,
Urseanu
,
M. I.
,
van Baten
,
J. M.
, and
Ellenberger
,
J.
,
1999
, “
Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent Regime: Experiments vs. Eulerian Simulations
,”
Chem. Eng. Sci.
,
54
, pp.
4903
4911
.
3.
Shimizu
,
K.
,
Takada
,
S.
,
Minekawa
,
K.
, and
Kawase
,
Y.
,
2000
, “
Phenomenological Model for Bubble Column Reactors: Prediction of Gas Hold-Up and Volumetric Mass Transfer Coefficients
,”
Chem. Eng. J.
,
78
, pp.
21
28
.
4.
Pohorecki
,
R.
,
Moniuk
,
W.
,
Bielski
,
P.
, and
Zdrojkwoski
,
A.
,
2001
, “
Modelling of the Coalescence/Redispersion Processes in Bubble Columns
,”
Chem. Eng. Sci.
,
56
, pp.
6157
6164
.
5.
Olmos
,
E.
,
Gentric
,
C.
,
Vial
,
Ch.
,
Wild
,
G.
, and
Midoux
,
N.
,
2001
, “
Numerical Simulation of Multiphase Flow in Bubble Column Reactors: Influence of Bubble Coalescence and Break-Up
,”
Chem. Eng. Sci.
,
56
, pp.
6359
6365
.
6.
Serizawa
,
A.
,
Kataoka
,
I.
, and
Michiyoshi
,
I.
,
1975
, “
Turbulence Structure of Air-Water Bubbly Flow—I. Measuring Techniques
,”
Int. J. Multiphase Flow
,
2
, pp.
347
356
.
7.
Heringe
,
R. A.
, and
Davis
,
M. R.
,
1976
, “
Structural Development of Gas-Liquid Mixture Flows
,”
J. Fluid Mech.
,
73
, pp.
97
123
.
8.
Welle
,
R. V.
,
1985
, “
Void Fraction, Bubble Velocity and Bubble Size in Two-Phase Flow
,”
J. Neurosurg.
,
11
, pp.
317
345
.
9.
Kataoka
,
I.
,
Ishii
,
M.
, and
Serizawa
,
A.
,
1986
, “
Local Formulation and Measurements of Interfacial Area Concentration in Two-Phase Flow
,”
J. Neurosurg.
,
12
, pp.
505
529
.
10.
Liu, T. J., 1989, “Experimental Investigation of Turbulence Structure in Two-Phase Bubbly Flow,” Ph.D. Thesis, Northwestern University, Evanston, IL.
11.
Kocamustafaogullari
,
G.
, and
Wang
,
Z.
,
1995
, “
An Experimental Study on Local Interfacial Parameters in a Horizontal Bubbly Two-Phase Flow
,”
J. Neurosurg.
,
17
, pp.
553
572
.
12.
Revankar
,
S. T.
, and
Ishii
,
M.
,
1992
, “
Local Interfacial Area Measurement in Bubbly Flow
,”
Int. J. Heat Mass Transfer
,
35
, pp.
913
925
.
13.
Velidandla
,
V.
,
Putta
,
S.
, and
Roy
,
R. P.
,
1996
, “
Velocity Field in Isothermal Turbulent Bubbly Gas-Liquid Flow Through a Pipe
,”
Exp. Fluids
,
21
, pp.
347
356
.
14.
Tu
,
J. Y.
, and
Yeoh
,
G. H.
,
2002
, “
On Numerical Modelling of Low-Pressure Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1197
1209
.
15.
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2002
, “
Implementation of a Two-Phase Boiling Model Into the RELAP/MOD2 Computer Code to Predict Void Distribution in Low-Pressure Subcooled Boiling Flows
,”
Nucl. Sci. Eng.
,
140
, pp.
182
188
.
16.
Yeoh
,
G. H.
,
Tu
,
J. Y.
,
Lee
,
T. H.
, and
Park
,
G.-C.
,
2002
, “
Prediction and Measurement of Local Two-Phase Flow Parameters in a Boiling Flow Channel
,”
Numer. Heat Transfer, Part A
,
42
, pp.
173
192
.
17.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
,
Chem. Eng. Prog.
,
48
, pp.
141
148
.
18.
Anglart
,
H.
, and
Nylund
,
O.
,
1996
, “
CFD Application to Prediction of Void Distribution in Two-Phase Bubbly Flows in Rod Bundles
,”
Nucl. Sci. Eng.
,
163
, pp.
81
98
.
19.
Lahey
, Jr.,
R. T.
, and
Drew
,
D. A.
,
2001
, “
The Analysis of Two-Phase Flow and Heat Transfer Using Multidimensional, Four Field, Two-Fluid Model
,”
Nucl. Eng. Des.
,
204
, pp.
29
44
.
20.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
,
1981
, “
Momentum and Heat Transfer in Two-Phase Bubbly Flow-I
,”
Int. J. Multiphase Flow
,
7
, pp.
167
178
.
21.
Judd
,
R. L.
, and
Hwang
,
K. S.
,
1976
, “
A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation
,”
ASME J. Heat Transfer
,
98
, pp.
623
629
.
22.
Lo, S., 1996, “Application of Population Balance to CFD Modelling of Bubbly Flow via the MUSIG Model,” AEAT-1096, AEA Technology.
23.
Prince
,
M. J.
, and
Blanch
,
H. W.
,
1990
, “
Bubble Coalescence and Break-Up in Air-Sparged Bubble Column
,”
AIChE J.
,
36
, pp.
1485
1499
.
24.
Chesters
,
A. K.
, and
Hoffman
,
G.
,
1982
, “
Bubble Coalescence in Pure Liquids
,”
Appl. Sci. Res.
,
38
, pp.
353
361
.
25.
Rotta, J. C., 1972, Turbulente Stromungen, Teubner, Stuttgart.
26.
Luo
,
H.
, and
Svendsen
,
H.
,
1996
, “
Theoretical Model for Drop and Bubble Break-Up in Turbulent Dispersions
,”
AIChE J.
,
42
, pp.
1225
1233
.
27.
Kuboi
,
R.
,
Komasawa
,
I.
, and
Otake
,
T.
,
1972a
, “
Behavior of Dispersed Particles in Turbulent Liquid Flows
,”
J. Chem. Eng. Jpn.
,
5
, pp.
349
355
.
28.
Kuboi
,
R.
,
Komasawa
,
I.
, and
Otake
,
T.
,
1972b
, “
Collision and Coalescence of Dispersed Drops in Turbulent Liquid Flow
,”
J. Chem. Eng. Jpn.
,
5
, pp.
423
424
.
29.
Stone
,
H. L.
,
1968
, “
Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
5
, pp.
530
558
.
30.
Reimann, J., Kusterer, H., and Jhon, H., 1983, “Two-Phase Flow Rate Measurements With Pitot Tube and Density Measurements,” Symposium Measuring Techniques in Gas-Liquid Two-Phase Flows, Nancy, France.
31.
Bonjour
,
J.
, and
Lallemand
,
M.
,
2001
, “
Two-Phase Flow Structure Near a Heated Vertical Wall During Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
27
, pp.
1789
1802
.
32.
Prodanovic
,
V.
,
Fraser
,
D.
, and
Salcudean
,
M.
,
2002
, “
Bubble Behavior in Subcooled Flow Boiling of Water at Low Pressures and Low Flow Rates
,”
Int. J. Multiphase Flow
,
28
, pp.
1
19
.
33.
Gopinath
,
R.
,
Basu
,
N.
, and
Dhir
,
V. K.
,
2002
, “
Interfacial Heat Transfer During Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3947
3959
.
34.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
,
1995
, “
Foundation of the Interfacial Area Transport Equation and its Closure Relations
,”
Int. J. Heat Mass Transfer
,
38
, pp.
481
493
.
35.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2002
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
124
, pp.
717
728
.
36.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
Active Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2587
2601
.
37.
Zeitoun
,
O.
, and
Shoukri
,
M.
,
1997
, “
Axial Void Fraction Profile in Low Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
40
, pp.
867
879
.
38.
Lee
,
T. H.
,
Park
,
G.-C.
, and
Lee
,
D. J.
,
2002
, “
Local Flow Characteristics of Subcooled Boiling Flow of Water in a Vertical Annulus
,”
Int. J. Multiphase Flow
,
28
, pp.
1351
1368
.
You do not currently have access to this content.