This paper presents a new numerical scheme for simulating multidimensional transient and steady-state microscale energy transport. The new method is based on the method of characteristics that follows heat carriers along their pathline. Unlike traditional methods, it uses a fixed computational grid and follows the heat carriers backward in time. The method 1) is accurate, 2) is unconditionally stable, 3) can deal with complex geometries without a large increase in computational cost, and 4) can be used for solving coupled equations using other numerical schemes. First, the numerical scheme is described. Then, simulations for transient and steady-state phonon transport in dielectric thin films are discussed. Numerical results are compared with analytical and reported numerical solutions and good agreement is obtained.

1.
Tien
,
C. L.
, and
Chen
,
G.
,
1994
, “
Challenges in Microscale Conductive and Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
116
, pp.
799
807
.
2.
Tien, C. L., Majumdar, A., and Gerner, F. M. (eds.), 1997, Microscale Energy Transport, Taylor and Francis, London.
3.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, pp.
7
16
.
4.
Kittel, C., 1996, Introduction to Solid-state Physics, Wiley, New York.
5.
Ramkrishna, D., 2000, Population Balances, Academic Press, San Diego.
6.
Goodson, K. E., Ju, Y. S., and Asheghi, M., 1997, “Thermal Phenomena in Semiconductor Devices and Interconnects,” Microscale Energy Transport, Taylor and Francis, London, pp. 229–288.
7.
Majumdar, A., 1997, “Microscale Energy Transport in Solids,” in Microscale Energy Transport, Taylor and Francis, pp. 3–93.
8.
Kumar
,
S.
, and
Ramkrishna
,
D.
,
1996
, “
On the Solution of Population Balance Equation by Discretization—I a Fixed Pivot Technique
,”
Chem. Eng. Sci.
,
51
(
8
), pp.
1311
1332
.
9.
Kumar
,
S.
, and
Ramkrishna
,
D.
,
1997
, “
On the Solution of Population Balance Equation by Discretization—III Nucleation, Growth, and Aggregation of Particles
,”
Chem. Eng. Sci.
,
52
(
4
), pp.
4659
4679
.
10.
Chen
,
G.
,
2001
, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
,
86
(
11
), pp.
2297
2300
.
11.
Murthy
,
J.
, and
Mathur
,
S. R.
,
2002
, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Transfer
,
124
, pp.
1176
1181
.
12.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39
.
13.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
2001
, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
123
, pp.
130
137
.
14.
Klitsner
,
T.
,
VanCleve
,
J. E.
,
Fisher
,
H. E.
, and
Pohl
,
R. O.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
,
38
(
11
), pp.
7576
7594
.
15.
Kumar
,
S.
,
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
The Differential-Discrete-Ordinate Method for Solving the General Equation of Radiative Transfer
,”
ASME J. Heat Transfer
,
112
, pp.
424
429
.
16.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
,
24
, pp.
373
389
.
17.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York, NY.
18.
Murthy
,
J.
, and
Mathur
,
S. R.
,
2003
, “
An Improved Computational Procedure for Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
,
125
, pp.
904
910
.
19.
Truelove
,
J. S.
,
1987
, “
Discrete-Ordinate Solutions of the Radiative Transport Equation
,”
ASME J. Heat Transfer
,
109
, pp.
1048
1051
.
20.
Raithby
,
G. D.
,
1994
, “
Discussion of the Finite-Volume Method for Radiation and its Application Using 3D Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
35
, pp.
389
405
.
21.
Modest
,
M. F.
,
2003
, “
Backward Monte Carlo Simulations in Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
125
, pp.
57
62
.
22.
Pilon
,
L.
, and
Viskanta
,
R.
,
2003
, “
Modified Method of Characteristics for Solving the Population Balance Equation
,”
Int. J. Numer. Methods Fluids
,
42
, pp.
1211
1236
.
23.
Zeng
,
T.
, and
Chen
,
G.
,
2001
, “
Phonon Heat Conduction in Thin Films: Impact of Thermal Boundary Resistance and Internal Heat Generation
,”
ASME J. Heat Transfer
,
123
, pp.
340
347
.
24.
Allievi
,
A.
, and
Bermejo
,
R.
,
2000
, “
Finite Element Modified Method of Characteristics for Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
32
, pp.
439
464
.
25.
Hoffman, J. D., 1998, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York.
26.
Marcum, D. L., 1985, Calculation of three-dimensional inviscid flowfields, PhD thesis, Purdue University.
27.
Patankar, S., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
28.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
, pp.
749
759
.
29.
Holland
,
M. G.
,
1964
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
134
(
2A
), pp.
471
480
.
30.
Coelho
,
P. J.
,
2002
, “
Bounded skew high-order resolution schemes for the discrete ordinates method”
,
J. Computational Physics
,
175
(
2
) pp.
412
437
.
You do not currently have access to this content.