In compact transistors, large electric fields near the drain side create hot spots whose dimensions are smaller than the phonon mean free path in the medium. In this paper, we present a study of unsteady hot spot behavior. The unsteady gray phonon Boltzmann transport equation (BTE) is solved in the relaxation time approximation using a finite volume method. Electron-phonon interaction is represented as a heat source term in the phonon BTE. The evolution of the temperature profile is governed by the interaction of four competing time scales: the phonon residence time in the hot spot and in the domain, the duration of the energy source, and the phonon relaxation time. The influence of these time scales on the temperature is investigated. Both boundary scattering and heat source localization effects are observed to have considerable impact on the thermal predictions. Comparison of BTE solutions with conventional Fourier diffusion analysis reveals significant discrepancies.

1.
Flik
,
M. I.
,
Choi
,
B. I.
, and
Goodson
,
K. E.
,
1992
, “
Heat Transfer Regimes in Microstructures
,”
ASME Journal of Heat Transfer
,
114
, pp.
666
674
.
2.
Majumdar, A., 1998, “Microscale Energy Transport in Solids,” Microscale Energy Transport, C. L. Tien et al., eds., Taylor & Francis, Chap. 1.
3.
Chen, G., 1998, “Phonon Wave Effects on Heat Conduction in Thin Films,” AIAA/ASME Joint Thermophysics and Heat Transfer Conference, ASME, New York, 3, pp. 205–213.
4.
Chen
,
G.
,
2000
, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanopart. Res.
,
2
, pp.
199
204
.
5.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME Journal of Heat Transfer
,
115
, pp.
7
16
.
6.
Kittel, C., 1996, Introduction to Solid State Physics, seventh edition, John Wiley & Sons, Chaps. 4,5.
7.
Ashcroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders College Publishing, Chaps. 22,23.
8.
Ju, Y. S., 1999, “Microscale Heat Conduction in Integrated Circuits and Their Constituent Films,” Ph.D. thesis, Stanford University, Stanford, CA.
9.
Mahan
,
G. D.
, and
Claro
,
F.
,
1988
, “
Nonlocal Theory of Thermal Conductivity
,”
Phys. Rev. B
,
38
(
3
), pp.
1963
1969
.
10.
Claro
,
F.
, and
Mahan
,
G. D.
,
1989
, “
Transient Heat Transport in Solids
,”
J. Appl. Phys.
,
66
(
9
), pp.
4213
4217
.
11.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,”
ASME Journal of Heat Transfer
,
118
, pp.
539
545
.
12.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME
Journal of Heat Transfer
,
115
, pp.
835
841
.
13.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals: 1—Analysis
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2789
2797
.
14.
Sverdrup, P. G., Ju, Y. S., and Goodson, K. E., 1999, “Impact of Heat Source Localization on Conduction Cooling of Silicon-On-Insulator Devices,” Proceedings of International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Integrated Syst. Eng., Intellisense Corp., pp. 399–402.
15.
Sverdrup, P. G., Banerjee, K., Dai, C., Shih, W., Dutton, R. W., and Goodson, K. E., 2000, “Sub-Continuum Thermal Simulations of Deep Sub-Micron Devices Under ESD Conditions,” International Conference on Simulation Semiconductor Processes and Devices, IEEE Electron Devices Society, pp. 54–57.
16.
Amerasekera, A., and Duvvury, C., 1995, ESD in Silicon Integrated Circuits, John Wiley & Sons.
17.
Sverdrup, P. G., 2000, “Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices,” Ph.D. thesis, Stanford University, Stanford, CA.
18.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
2001
, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors,”
ASME Journal of Heat Transfer
,
123
, pp.
130
137
.
19.
Armstrong
,
B. H.
,
1981
, “
Two-Fluid Theory of Thermal Conductivity of Dielectric Crystals
,”
Phys. Rev. B
,
23
(
2
), pp.
883
899
.
20.
Armstrong
,
B. H.
,
1985
, “
N processes, the relaxation-time approximation, and lattice thermal conductivity
,”
Phys. Rev. B
,
32
(
6
), pp.
3381
3390
.
21.
Sverdrup
,
P. G.
,
Sinha
,
S.
,
Asheghi
,
M.
,
Uma
,
S.
, and
Goodson
,
K. E.
,
2001
, “
Measurement of Ballistic Phonon Conduction Near Hotspots in Silicon
,”
Appl. Phys. Lett.
,
78
(
21
), pp.
3331
3333
.
22.
Majumdar
,
A.
,
Fushinobu
,
K.
, and
Hijikata
,
K.
,
1995
, “
Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor
,”
J. Appl. Phys.
,
77
(
12
), pp.
6686
6694
.
23.
Fushinobu, K., Hijikata, K., and Majumdar, A., 1995, “Heat Generation in Sub-Micron GaAs MESFETs,” Proceedings of International Intersociety Electronic Packaging Conference, ASME, New York, EEP-Vol. 10-2, Advances in Electronic Packaging, pp. 897–902.
24.
Fushinobu
,
K.
,
Majumdar
,
A.
, and
Hijikata
,
K.
,
1995b
, “
Heat Generation and Transport in Submicron Semiconductor Devices,”
ASME Journal of Heat Transfer
,
117
, pp.
25
31
.
25.
Lai
,
J.
, and
Majumdar
,
A.
,
1996
, “
Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices
,”
J. Appl. Phys.
,
79
(
9
), pp.
7353
7361
.
26.
Blotekjaer
,
K.
,
1970
, “
Transport Equations for Electrons in Two-Valley Semiconductors
,”
IEEE Trans. Electron Devices
,
ED-17
, No.
1
, pp.
38
47
.
27.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Chaps. 2–5.
28.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
419
425
.
29.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
1998
, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
313
321
.
30.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
1997
, “
A pressure Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
31
(
2
), pp.
195
216
.
31.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, Chap. 12.
32.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
49
.
33.
Balandin
,
A.
, and
Wang
,
K. L.
,
1998
, “
Significant Decrease in the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
(
3
), pp.
1544
1549
.
You do not currently have access to this content.