Unsteady heat transfer caused by a confined impinging jet is studied using direct numerical simulation (DNS). The time-dependent compressible Navier-Stokes equations are solved using high-order numerical schemes together with high-fidelity numerical boundary conditions. A sixth-order compact finite difference scheme is employed for spatial discretization while a third-order explicit Runge-Kutta method is adopted for temporal integration. Extensive spatial and temporal resolution tests have been performed to ensure accurate numerical solutions. The simulations cover several Reynolds numbers and two nozzle-to-plate distances. The instantaneous flow fields and heat transfer distributions are found to be highly unsteady and oscillatory in nature, even at relatively low Reynolds numbers. The fluctuation of the stagnation or impingement Nusselt number, for example, can be as high as 20 percent of the time-mean value. The correlation between the vortex structures and the unsteady heat transfer is carefully examined. It is shown that the fluctuations in the stagnation heat transfer are mainly caused by impingement of the primary vortices originating from the jet nozzle exit. The quasi-periodic nature of the generation of the primary vortices due to the Kelvin-Helmholtz instability is behind the nearly periodic fluctuation in impingement heat transfer, although more chaotic and non-linear fluctuations are observed with increasing Reynolds numbers. The Nusselt number distribution away from the impingement point, on the other hand, is influenced by the secondary vortices which arise due to the interaction between the primary vortices and the wall jets. The unsteady vortex separation from the wall in the higher Reynolds number cases leads to a local minimum and a secondary maximum in the Nusselt number distribution. These are due to the changes in the thermal layer thickness accompanying the unsteady flow structures.

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
, pp.
106
115
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
, pp.
111
134
.
4.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
The Effect of Inclination on the Heat Transfer Between a Flat Surface and an Impinging Two-Dimensional Air Jet
,”
Int. J. Heat Fluid Flow
,
21
, pp.
156
163
.
5.
Popiel
,
C. O.
, and
Trass
,
O.
,
1991
, “
Visualization of a Free and Impinging Round Jet
,”
Exp. Therm. Fluid Sci.
,
4
, pp.
253
264
.
6.
Ho
,
C. M.
, and
Nosseir
,
N. S.
,
1981
, “
Dynamics of an Impinging Jet. Part 1. The feedback phenomenon
,”
J. Fluid Mech.
,
105
, pp.
119
142
.
7.
Didden
,
N.
, and
Ho
,
C. M.
,
1985
, “
Unsteady Separation in a Boundary Layer Produced by an Impinging Jet
,”
J. Fluid Mech.
,
160
, pp.
235
256
.
8.
Olsson
,
M.
, and
Fuchs
,
L.
,
1998
, “
Large Eddy Simulations of a Forced Semiconfined Circular Impinging Jet
,”
Phys. Fluids
,
10
(
2
), pp.
476
486
.
9.
O¨zdemir
,
I. B.
, and
Whitelay
,
J. H.
,
1992
, “
Impingement of an Axisymmetric Jet on Unheated and Heated Flat Plates
,”
J. Fluid Mech.
,
240
, pp.
503
532
.
10.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structure in a Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transf.
,
39
(
17
), pp.
3695
3706
.
11.
Luo
,
K. H.
, and
Sandham
,
N. D.
,
1997
, “
Direct Numerical Simulation of Supersonic Jet Flow
,”
J. Eng. Math.
,
32
, pp.
121
142
.
12.
Jiang
,
X.
, and
Luo
,
K. H.
,
2000
, “
Direct Numerical Simulation of the Puffing Phenomenon of an Axisymmetric Thermal Plume
,”
Theor. Comput. Fluid Dyn.
,
14
, pp.
55
74
.
13.
Luo
,
K. H.
, and
Sandham
,
N. D.
,
1997
, “
Instability of Vortical and Acoustic Models in Supersonic Round Jets
,”
Phys. Fluids
,
9
(
4
), pp.
1003
1013
.
14.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
, pp.
1
24
.
15.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
, pp.
104
129
.
16.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-like Resolution
,”
J. Comput. Phys.
,
103
, pp.
16
42
.
17.
Williamson
,
J. H.
,
1980
, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
,
35
, pp.
48
56
.
18.
Sandham
,
N. D.
, and
Reynolds
,
W. C.
,
1991
, “
Three-Dimensional Simulations of Large Eddies in the Compressible Mixing Layer
,”
J. Fluid Mech.
,
224
, pp.
133
158
.
19.
Law
,
H.-S.
, and
Masliyah
,
J. H.
,
1984
, “
Mass Transfer Due to a Confined Laminar Impinging Two-Dimensional Jet
,”
Int. J. Heat Mass Transf.
,
27
(
4
), pp.
529
539
.
20.
Al-Sanea
,
S.
,
1992
, “
A Numerical Study of the Flow and Heat-Transfer Characteristics of an Impinging Laminar Slot-Jet Including Crossflow Effects
,”
Int. J. Heat Mass Transf.
,
35
(
10
), pp.
2501
2513
.
21.
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1994
, “
Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet
,”
ASME J. Heat Transfer
,
116
, pp.
479
482
.
22.
Lee
,
X. C.
,
Ma
,
C. F.
,
Xheng
,
Q.
,
Zhuang
,
Y.
, and
Tian
,
Y. Q.
,
1997
, “
Numerical Study of Recovery Effect and Impingement Heat Transfer With Submerged Circular Jets of Large Prandlt Number Liquid
,”
Int. J. Heat Mass Transf.
,
40
(
11
), pp.
2647
2653
.
23.
Chen
,
M.
,
Chalupa
,
R.
,
West
,
A. C.
, and
Modi
,
V.
,
2000
, “
High Schmidt Mass Transfer in a Laminar Impinging Slot Jet Flow
,”
Int. J. Heat Mass Transf.
,
43
, pp.
3907
3915
.
24.
Gauntner, J., Livingood, N. B., and Hrycak, P., 1970, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate,” NASA TN D-5652, Lewis Research Center, USA.
25.
Livingood, N. B., and Hrycak, P., 1973, “
Impingement Heat Transfer From Turbulent Air Stream Jets to Flat Plates—A Literature Survey
,” NASA TM X-2778, Lewis Research Center, USA.
26.
Sparrow
,
E. M.
, and
Wong
,
T. C.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transf.
,
18
, pp.
597
605
.
27.
Ho
,
C. M.
, and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
365
424
.
28.
Hoffmann, G., and Benocci, C., 1994, “
Numerical Simulation of Spatially-Developing Planar Jets,” in Application of Direct and Large Eddy Simulation to Transition and Turbulence, AGARD-CP-551, pp. 26-1–26-6.
29.
Lytle
,
D.
, and
Webb
,
B.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transf.
,
37
, pp.
1687
1697
.
30.
Garimella
,
S.
, and
Rice
,
R.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
, pp.
871
877
.
31.
Colucci
,
D.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
, pp.
71
80
.
32.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P. A.
,
1999
, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Mass Transf.
,
20
, pp.
1
9
.
33.
Meola
,
C.
,
de Luca
,
L.
,
Carlomagno
,
G. M.
,
1996
, “
Influence of Shear Layer Dynamics on Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
13
,
29
37
.
You do not currently have access to this content.