The temperature rise in sub-micrometer silicon devices is predicted at present by solving the heat diffusion equation based on the Fourier law. The accuracy of this approach needs to be carefully examined for semiconductor devices in which the channel length is comparable with or smaller than the phonon mean free path. The phonon mean free path in silicon at room temperature is near 300 nm and exceeds the channel length of contemporary transistors. This work numerically integrates the two-dimensional phonon Boltzmann transport equation (BTE) within the silicon region of a silicon-on-insulator (SOI) transistor. The BTE is solved together with the classical heat diffusion equation in the silicon dioxide layer beneath the transistor. The predicted peak temperature rise is nearly 160 percent larger than a prediction using the heat diffusion equation for the entire domain. The disparity results both from phonon-boundary scattering and from the small dimensions of the region of strongest electron-phonon energy transfer. This work clearly shows the importance of sub-continuum heat conduction in modern transistors and will facilitate the development of simpler calculation strategies, which are appropriate for commercial device simulators.

1.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, pp.
7
16
.
2.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films with Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, pp.
3005
3007
.
3.
Lai
,
J.
, and
Majumdar
,
A.
,
1996
, “
Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices
,”
J. Appl. Phys.
,
79
, pp.
7353
7361
.
4.
Raha
,
P.
,
Ramaswamy
,
S.
, and
Rosenbaum
,
E.
,
1997
, “
Heat Flow Analysis for EOS/ESD Protection Device Design in SOI Technology
,”
IEEE Trans. Electron Devices
,
44
, pp.
464
471
.
5.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
,
Antoniadis
,
D. A.
,
1995
, “
Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits
,”
ASME J. Heat Transfer
,
117
, pp.
574
581
.
6.
Wolbert
,
P. B.
,
Wachutka
,
G. K.
,
Krabbenborg
,
B. H.
, and
Mouthaan
,
T. J.
,
1994
, “
Nonisothermal Device Simulation Using the 2-D Numerical Process/Device Simulator TRENDY and Application to SOI-Devices
,”
IEEE Trans. Comput.-Aided Des.
,
13
, pp.
293
302
.
7.
Yu, Z., Chen, D., So, L., and Dutton, R. W., 1994, “PISCES-2ET—Two Dimensional Device Simulation for Silicon and Heterostructures—Device Simulation Manual,” Stanford University, Stanford, CA.
8.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
,
119
, pp.
220
9
.
9.
Goodson
,
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
, pp.
279
286
10.
Sondheimer
,
E. H.
,
1952
, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
,
1
,
No. 1
No. 1
11.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
, pp.
539
545
.
12.
Cahill
,
D. G.
,
1997
, “
Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces
,”
Microscale Thermophys. Eng.
,
1
, pp.
85
109
.
13.
Avant! Corporation, 1999, Medici: Two-Dimensional Semiconductor Device Simulation and TSUPREM-4: Two-Dimensional Semiconductor Process Simulation, Fremont, CA.
14.
Duvvury, C., Amerasekera, A., Joyner, K., Ramaswamy, S., and Young, S., 1996, “ESD Design For Deep Submicron SOI Technology,” 1996 Symposium on VLSI Technology, pp. 194–195.
15.
Lundstrom, M., 1998, “Scattering Theory of Carrier Transport in Semiconductor Devices,” SISPAD 1998, p. 215–222.
16.
Blotekjaer
,
K.
,
1970
, “
Transport Equations for Electrons in Two-Valley Semiconductors
,”
IEEE Trans. Electron Devices
,
ED-17
, No.
1
, pp.
38
47
.
17.
Buot
,
F. A.
, and
Sleger
,
K. J.
,
1984
, “
Numerical Simulation of Hot-Electron Effects on Source-Drain Burnout Characteristics of GaAs Power FETs
,”
Solid-State Electron.
,
27
, No.
12
, pp.
1067
1081
.
18.
Moglestue
,
C.
,
Buot
,
F. A.
, and
Anderson
,
W. T.
,
1995
, “
Ensemble Monte Carlo Particle Investigation of Hot Electron Induced Source-Drain Burnout Characteristics of GaAs Field Effect Transistors
,”
J. Appl. Phys.
,
78
, No.
4
, pp.
2343
2348
.
19.
Majumdar, A., 1998, Microscale Energy Transport, C.-L. Tien et al., eds., Taylor & Francis, New York.
20.
Wachutka
,
G. K.
,
1990
, “
Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling
,”
IEEE Trans. Comput.-Aided Des.
,
9
, pp.
1141
1149
.
21.
Ju, Y. S., 1999, “Microscale Heat Conduction in Integrated Circuits and their Constituent Thin Films,” Ph.D. thesis, Stanford University, Stanford, CA.
22.
Joshi
,
A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
, pp.
31
39
.
23.
Armstrong
,
B.
,
1981
, “
Two-Fluid Theory of Thermal Conductivity of Dielectric Crystals
,”
Phys. Rev. B
,
23
, No.
2
, pp.
883
899
.
24.
Ju, Y. S., and Goodson, K. E., 1997, “Impact of Phonon Dispersion upon the Size Effect on Thermal Conduction along Thin Semiconductor Films,” Proc. ASME International Mechanical Engineering Congress and Exposition, Dallas, TX, DSC-Vol. 62, pp. 181–190.
25.
Lewis, E., 1984, Computational Methods of Neutron Transport, Wiley, New York.
26.
Fiveland, W. A., 1991, “The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering,” Fundamentals of Radiation Heat Transfer, HTD-Vol 160, AMSE New York, NY, pp. 89–96.
27.
Siegel, R., and Howell, J., 1992, Thermal Radiation Heat Transfer, 3rd ed., Taylor & Francis, Washington, D.C.
28.
Glass
,
D.
,
Ozisik
,
M.
, and
McRae
,
D.
,
1985
, “
On the Numerical Solution of Hyperbolic Heat Conduction
,”
Numer. Heat Transfer
,
8
, pp.
497
504
.
29.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
, pp.
2461
2471
.
30.
Kreysig, E., 1993, Advanced Engineering Mathematics, 7th ed., Wiley, New York, pp. 1061–1063.
31.
Little
,
W. A.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
, pp.
334
349
.
32.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp.
605
668
.
33.
Phelan
,
P. E.
,
1998
, “
Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors
,”
ASME J. Heat Transfer
,
120
, pp.
37
43
.
34.
Stephens
,
R. B.
,
1973
, “
Low-Temperature Specific Heat and Thermal Conductivity of Noncrystalline Solids
,”
Phys. Rev. B
,
8
, pp.
2896
2905
.
35.
Kittel, C., 1996, Introduction to Solid State Physics, Wiley, New York.
36.
Heaslet
,
M. A.
, and
Warming
,
R. F.
,
1965
, “
Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium
,”
Int. J. Heat Mass Transf.
,
8
, pp.
979
984
.
You do not currently have access to this content.